login
Vol. 127
Latest Volume
All Volumes
PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-11-30
4-Port MIMO Antenna for Sub-1 GHz , IoT , and Sub-6 GHz 5G New Radio Applications
By
Progress In Electromagnetics Research C, Vol. 127, 113-125, 2022
Abstract
A 4-port planar multiple-input multiple-output (MIMO) antenna system design is proposed. The antenna elements are modified meandered wideband antennas which cover frequencies from 674 MHz to 1 GHz, 1.9 GHz to 2.1 GHz, 3.175 GHz to 3.476 GHz, 4.529 GHz to 4.761 GHz and 5.254 to 5.513 GHz for long term evolution (LTE), Internet of Things (IoT), and sub-6 GHz applications and thus can be used for robotic navigation, logistics, healthcare, tracking, transportation etc. Due to very small envelope correlation coefficient (ECC) between the ports (< 0.5), the MIMO configuration can be efficiently implemented which helps in increasing the data rates. It is very compact in size and thus can be used for portable handheld devices. Since there is the problem of current localization due to common ground, the future work aims at minimizing coupling and improving the impedance matching using novel decoupling networks. These MIMO antennas are connected to a common slotted ground plane. Antenna simulation has been done using Computer Simulation Technology (CST) Microwave Studio Suite simulator. A low cost FR-4 substrate with dimensions 65 mm × 90 mm × 1.6 mm has been used for antenna fabrication, and experimental results are obtained using an anechoic chamber and a vector network analyser. ECC and realized gain of the antenna are also obtained experimentally and are almost similar to the simulated results.
Citation
Bisma Bukhari, and Ghulam Mohd Rather, "4-Port MIMO Antenna for Sub-1 GHz , IoT , and Sub-6 GHz 5G New Radio Applications," Progress In Electromagnetics Research C, Vol. 127, 113-125, 2022.
doi:10.2528/PIERC22090705
References

1. Shereen, M. K., M. I. Khattak, and J. Nebhen, "A review of achieving frequency reconfiguration through switching in microstrip patch antennas for future 5G applications," Alexandria Engineering Journal, Vol. 61, No. 1, 29-40, 2022.
doi:10.1016/j.aej.2021.04.105

2. Kim, G. and K. Sangkil, "Design and analysis of dual polarized broadband microstrip patch antenna for 5G mmwave antenna module on FR4 substrate," IEEE Access, Vol. 9, 64306-64316, 2021.
doi:10.1109/ACCESS.2021.3075495

3. Kumar, G. and K. P. Ray, Broadband Microstrip Antennas, Artech House, London, U.K., 2003.

4. Haykin, S., "Cognitive radio: Brain-empowered wireless communications," IEEE Journal on Selected Areas in Communications, Vol. 23, No. 2, 201-220, 2005.
doi:10.1109/JSAC.2004.839380

5. Tawk, Y., J. Costantine, and C. Christodoulou, Antenna Design for Cognitive Radio, Artech House Boston, USA, 2016.

6. De Flaviis, F., L. Jofre, J. Romeu, and A. Grau, "Multiantenna systems for MIMO communications," Synthesis Lectures on Antennas, Vol. 31, No. 1, 1-250, 2008.
doi:10.1007/978-3-031-01536-6

7. Varzakas, P., "Estimation of radio capacity of a spread spectrum cognitive radio rayleigh fading system," ACM Proceedings of the 17th Pan-Hellenic Conference on Informatics with international participation, 63-66, 2013.

8. Bakulin, M. G., V. B. Kreindelin, and D. Y. Pankratov, "Analysis of the capacity of MIMO channel in fading conditions," 2018 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO), 1-6, 2018.

9. Chitra, M. P., S. Divya, M. Premkumar, V. Tamilselvi, and N. Karthika, "MIMO cognitive radio capacity in flat fading channel," 2017 Third International Conference on Science Technology Engineering & Management (ICONSTEM), 915-919, 2017.
doi:10.1109/ICONSTEM.2017.8261335

10. Cheng, B. and Z. Du, "Dual polarization MIMO antenna for 5G mobile phone applications," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 7, 4160-4165, 2020.
doi:10.1109/TAP.2020.3044649

11. Chen, Y. S. and C. P. Chang, "Design of a four-element multiple-input{multiple-output antenna for compact long-term evolution small-cell base stations," IET Microwaves, Antennas & Propagation, Vol. 10, No. 4, 385-392, 2016.
doi:10.1049/iet-map.2015.0540

12. Chen, W. S. and K. H. Lai, "Compact design of MIMO antennas for LTE 700 application," 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 1148-1149, 2015.
doi:10.1109/APS.2015.7304962

13. Singh, H. S., G. K. Pandey, P. K. Bharti, and M. K. Meshram, "Compact printed diversity antenna for LTE700/GSM1700/1800/UMTS/Wi-Fi/Bluetooth/LTE2300/2500 applications for slim mobile handsets," Progress In Electromagnetics Research C, Vol. 56, 83-91, 2015.
doi:10.2528/PIERC14122601

14. Krishnamoorthy, R., A. Desai, R. Patel, and A. Grover, "4 element compact triple band MIMO antenna for sub-6 GHz 5G wireless applications," Wireless Networks, Vol. 27, No. 6, 3747-3759, 2021.
doi:10.1007/s11276-021-02734-8

15. Jaglan, N., S. D. Gupta, and M. S. Sharawi, "18 element massive MIMO/diversity 5G smartphones antenna design for sub-6 GHz LTE bands 42/43 applications," IEEE Open Journal of Antennas and Propagation, Vol. 2, 533-545, 2021.
doi:10.1109/OJAP.2021.3074290

16. Cha, J., C.-S. Leem, I. Kim, H. Lee, and H. Lee, "Broadband dual-polarized 2 × 2 MIMO antenna for a 5G wireless communication system," Electronics, Vol. 10, No. 17, 2141, 2021.
doi:10.3390/electronics10172141

17. Hussain, R., "Shared-aperture slot-based sub-6-GHz and mm-wave IoT antenna for 5G applications," IEEE Internet of Things Journal, Vol. 8, No. 13, 10807-10814, 2021.
doi:10.1109/JIOT.2021.3050383

18. Wang, W., Z. Zhao, Z. Fang, Q. Sun, X. Liao, K. Y. See, and Y. Zheng, "Compact broadband four- port MIMO antenna for 5G and IoT applications," 2019 IEEE Asia-Pacific Microwave Conference (APMC), 1536-1538, 2019.
doi:10.1109/APMC46564.2019.9038745

19. Li, S., X. L. Da, and S. Zhao, "The internet of things: A survey," Information Systems Frontiers, 243-259, 2015.
doi:10.1007/s10796-014-9492-7

20. Zaman, M. R., R. Azim, N. Misran, M F. Asillam, and T. Islam, "Development of a semielliptical partial ground plane antenna for RFID and GSM-900," International Journal of Antennas and Propagation, 2014.

21. Bukhari, B., C. Singh, K. R. Jha, and S. K. Sharma, "Planar MIMO antennas for IoT and CR applications," 2017 IEEE Applied Electromagnetics Conference (AEMC), 1-2, 2017.

22. Bashir, U., K. R. Jha, G. Mishra, G. Singh, and S. K. Sharma, "Octahedron-shaped linearly polarized antenna for multistandard services including RFID and IoT," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 7, 3364-3373, 2017.
doi:10.1109/TAP.2017.2705097

23. Ebrahimi, E. and P. S. Hall, "A dual port wide-narrowband antenna for cognitive radio," 2009 3rd European Conference on Antennas and Propagation, 809-812, 2009.

24. Al-Husseini, M., Y. Tawk, C. G. Christodoulou, K. Y. Kabalan, and A. El Hajj, "A reconfigurable cognitive radio antenna design," 2010 IEEE Antennas and Propagation Society International Symposium, 1-4, 2010.

25. Tawk, Y., J. Costantine, K. Avery, and C. G. Christodoulou, "Implementation of a cognitive radio front-end using rotatable controlled reconfigurable antennas," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 5, 1773-1778, 2011.
doi:10.1109/TAP.2011.2122239

26. Mansoul, A., F. Ghanem, M. R. Hamid, and M. Trabelsi, "A selective frequency-reconfigurable antenna for cognitive radio applications," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 515-518, 2014.
doi:10.1109/LAWP.2014.2311114

27. Cao, Y., S. W. Cheung, X. L. Sun, and T. I. Yuk, "Frequency-reconfigurable monopole antenna with wide tuning range for cognitive radio," Microwave and Optical Technology Letters, Vol. 56, No. 1, 145-152, 2014.
doi:10.1002/mop.28070

28. Zheng, S. H., X. Y. Liu, and M. M. Tentzeris, "A novel optically controlled reconfigurable antenna for cognitive radio systems," 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI), 1246-1247, 2014.
doi:10.1109/APS.2014.6904950

29. Erfani, E., J. Nourinia, C. Ghobadi, M. Niroo-Jazi, and T. A. Denidni, "Design and implementation of an integrated UWB/reconfigurable-slot antenna for cognitive radio applications," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 77-80, 2012.
doi:10.1109/LAWP.2011.2182631

30. Srivastava, G., A. Mohan, and A. Chakrabarty, "Compact reconfigurable UWB slot antenna for cognitive radio applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1139-1142, 2016.

31. Nachouane, H., A. Najid, A. Tribak, and F. Riouch, "Dual port antenna combining sensing and communication tasks for cognitive radio," International Journal of Electronics and Telecommunications, Vol. 62, No. 2, 121-127, 2016.
doi:10.1515/eletel-2016-0016

32. Hu, Z. H., P. S. Hall, and P. Gardner, "Reconfigurable dipole-chassis antennas for small terminal MIMO applications," Electronics Letters, Vol. 47, No. 17, 953-955, 2011.
doi:10.1049/el.2011.1801

33. Chacko, B. P., G. Augustin, and T. A. Denidni, "Electronically reconfigurable uniplanar antenna with polarization diversity for cognitive radio applications," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 213-216, 2015.
doi:10.1109/LAWP.2014.2360353

34. Cheng, S. P. and K. H. Lin, "A reconfigurable monopole MIMO antenna with wideband sensing capability for cognitive radio using varactor diodes," 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2233-2234, 2015.
doi:10.1109/APS.2015.7305505

35. Tawk, Y., F. Ayoub, C. G. Christodoulou, and J. Costantine, "A MIMO cognitive radio antenna system," 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI), 572-573, 2013.
doi:10.1109/APS.2013.6710946

36. Hussain, R. and M. S. Sharawi, "Integrated reconfigurable multiple-input-multiple-output antenna system with an ultra-wideband sensing antenna for cognitive radio platforms," IET Microwaves, Antennas & Propagation, Vol. 9, No. 9, 940-947, 2015.
doi:10.1049/iet-map.2014.0605

37. Jha, K. R. and S. K. Sharma, "Combination of frequency agile and quasi-elliptical planar monopole antennas in MIMO implementations for handheld devices," IEEE Antennas Propagation Mag., Vol. 60, 118-131, 2018.
doi:10.1109/MAP.2017.2774198

38. Fakharian, M. M., P. Rezaei, and A. A. Orouji, "A novel slot antenna with reconfigurable meander-slot DGS for cognitive radio applications," Applied Computational Electromagnetics Society Journal (ACES), Vol. 30, No. 7, 748-753, 2015.

39. Hussain, R. and M. S. Sharawi, "Planar four-element frequency agile MIMO antenna system with chassis mode reconfigurability," Microwave and Optical Technology Letters, Vol. 57, No. 8, 1933-1938, 2015.
doi:10.1002/mop.29218