Vol. 122

Latest Volume
All Volumes
All Issues
2022-07-27

Dual Band Split Ring Monopole Antenna Structures for 5G and WLAN Applications

By Shubhagini Verulkar, Alka Khade, Mahadu Annarao Trimukhe, and Rajiv Kumar Gupta
Progress In Electromagnetics Research C, Vol. 122, 17-30, 2022
doi:10.2528/PIERC22050803

Abstract

In this paper, dual-band split ring monopole antenna structures for 5G sub-6 GHz and WLAN applications are proposed. The antenna structures are designed from a rectangular annular ring monopole antenna. A compact dual rectangular split ring monopole antenna is designed to operate over dual bands. The two split rings are connected through a common arm. The structure is optimized to provide S11 ≤ -10 dB over 3.3-3.6 GHz and 5.15-5.5 GHz for 5G and WLAN applications. In the second dual-band antenna, a slot is cut in one of the arms to form another closed rectangular ring to further reduce the dimensions of the antenna. This structure provides S11 ≤ -10 dB over 3.3-3.6 and 5.5-5.9 GHz for 5G, WLAN and V2X applications. The two bands can be easily controlled as the dimensions of two rings determine the resonant frequencies of the two bands, and one of the arms of a ring is unresponsive to lower band and affects upper band only. Both antennas offer nearly omnidirectional radiation patterns in both bands. The two prototype antennas are fabricated on a 0.17λ0×0.19λ0 and 0.15λ0×0.19λ0 FR4 substrate, where λ0 is the free-space wavelength corresponding to 3.3 GHz. The measured results agree with the simulated ones.

Citation


Shubhagini Verulkar, Alka Khade, Mahadu Annarao Trimukhe, and Rajiv Kumar Gupta, "Dual Band Split Ring Monopole Antenna Structures for 5G and WLAN Applications," Progress In Electromagnetics Research C, Vol. 122, 17-30, 2022.
doi:10.2528/PIERC22050803
http://jpier.org/PIERC/pier.php?paper=22050803

References


    1. Zaman, W., H. Ahmad, and H. A Mahmood, "Miniaturized meandered printed monopole antenna for triband applications," Microwave and Optical Technology Letters, Vol. 60, No. 5, 1265-1271, 2018.
    doi:10.1002/mop.31149

    2. Zhi, R., M. Han, J. Bai, W. Wu, and G. Liu, "Miniature multiband antenna for WLAN and X-band satellite," Progress In Electromagnetics Research Letters, Vol. 75, 13-18, 2018.
    doi:10.2528/PIERL18021805

    3. Cui, Y., L. Yang, B. Liu, and R. Li, "Multiband planar antenna for LTE/GSM/UMTS and WLAN/WiMAX handsets," IET Microwaves, Antennas & Propagation, Vol. 10, No. 5, 502-506, 2016.
    doi:10.1049/iet-map.2015.0545

    4. Osklang, P., C. Phongcharoenpanich, and P. Akkaraekthalin, "Triband compact printed antenna for 2.4/3.5/5 GHz WLAN/WiMAX applications," International Journal of Antennas and Propagation, Article ID 8094908, 2019.

    5. Ahmad, H., W. Zaman, S. Bashir, and M. U. Rahman, "Compact triband slotted printed monopole antenna for WLAN and WiMAX applications," Int. J. RF Microw. Comput. Aided Eng., Vol. 29, 2019.

    6. Kunwar, A., A. K. Gautam, and B. K. Kanaujia, "Inverted L-slot triple-band antenna with defected ground structure for WLAN and WiMAX applications," Int. J. Microwave and Wireless Technologies, 1-6, 2015.

    7. Jing, J., J. Pang, H. Lin, Z. Qiu, and C.-J. Liu, "A multiband compact low-profile planar antenna based on multiple resonant stubs," Progress In Electromagnetics Research Letters, Vol. 94, 1-7, 2020.
    doi:10.2528/PIERL20071104

    8. Ran, X., Z. Yu, T. Xie, Y. Li, X. Wang, and P. Huang, "A novel dual-band binary branch fractal bionic antenna for mobile terminals," International Journal of Antennas and Propagation, Article ID 6109093, 2020.

    9. Wang, L., J. Yu, T. Xie, and K. Bi, "A novel multiband fractal antenna for wireless application," International Journal of Antennas and Propagation, Article ID 9926753, 2021.

    10. Kaur, A. and P. K. Malik, "Multiband elliptical patch fractal and defected ground structures microstrip patch antenna for wireless applications," Progress In Electromagnetics Research B, Vol. 91, 157-173, 2021.
    doi:10.2528/PIERB20102704

    11. Asadallah, F. A., J. Costantine, and Y. Tawk, "A multiband compact reconfigurable PIFA based on nested slots," IEEE Antennas and Wireless Propagation Letters, Vol. 17, 331-334, 2018.
    doi:10.1109/LAWP.2017.2788465

    12. Bharadwaj, S. S., D. Sipal, D. Yadav, and S. K. Koul, "A compact tri-band frequency reconfigurable antenna for LTE/Wi-Fi/ITS applications," Progress In Electromagnetics Research M, Vol. 91, 59-67, 2020.
    doi:10.2528/PIERM20011904

    13. Singh, P. P., P. K. Goswami, S. K. Sharma, and G. Goswami, "Frequency reconfigurable multiband antenna for IoT applications in WLAN, Wi-MAX, and C-band," Progress In Electromagnetics Research C, Vol. 102, 149-162, 2020.
    doi:10.2528/PIERC20022503

    14. Dattatreya, G. and K. K. Naik, "A low volume flexible CPW-fed elliptical-ring with split-triangular patch dual-band antenna," Int. J. RF Microw. Comput. Aided Eng., Vol. 29, 2019.

    15. Yazdani, R., M. Yousefi, H. Aliakbarian, H. Oraizi, and G. A. E. Vandenbosch, "Miniaturized triple-band highly transparent antenna," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 2, 712-718, 2020.
    doi:10.1109/TAP.2019.2947132

    16. Fu, S., X. Zhao, C. Li, and Z.Wang, "Dual-band and omnidirectional miniaturized planar composite dipole antenna for WLAN applications," Int. J. RF Microw. Comput. Aided Eng., Vol. 29, 2021.

    17. Arya, A. K., S. J. Kim, and S. Kim, "A dual-band antenna for LTE-R and 5G lower frequency," Progress In Electromagnetics Research Letters, Vol. 88, 113-119, 2020.
    doi:10.2528/PIERL19081502

    18. Swain, B. R. and A. K. Sharma, "An investigation of dual-band dual-square ring (DSR) based microstrip antenna for WiFi/WLAN and 5G-NR wireless applications," Progress In Electromagnetics Research M, Vol. 86, 17-26, 2019.
    doi:10.2528/PIERM19060501

    19. Rosaline, S. I. and S. Raghavan, "Design of split ring antennas for WLAN and WiMAX applications," Microwave and Optical Technology Letters, Vol. 58, No. 9, 2117-2122, 2016.
    doi:10.1002/mop.29996

    20. Daniel, R. S., R. Pandeeswari, and S. Raghavan, "Dual-band monopole antenna loaded with ELC metamaterial resonator for WiMAX and WLAN applications," Applied Physics A: Materials Science and Processing, Vol. 124, No. 10, 1-7, 2018.

    21. Prasad Jones Christydass, S. and N. Gunavathi, "Dual-band complementary split-ring resonator engraved rectangular monopole for GSM and WLAN/WiMAX/5G sub-6 GHz band," Progress In Electromagnetics Research C, Vol. 113, 251-263, 2021.
    doi:10.2528/PIERC21052007

    22. Pandeeswari, R., "A compact non-bianisotropic complementary split ring resonator inspired microstrip triple band antenna," Progress In Electromagnetics Research C, Vol. 81, 115-124, 2018.
    doi:10.2528/PIERC17103009

    23. Kumar, G. and K. P. Ray, Broadband Microstrip Antennas, Artech House, Norwood, MA, 2003.

    24. Ray, K. P., "Design aspects of printed monopole antennas for ultra-wide band applications," International Journal of Antennas and Propagation, Vol. 200, 1-8, 200.

    25. Mishra, S. K., R. K. Gupta, and J. Mukherjee, "Effect of substrate material on radiation characteristics of an UWB antenna," Loughborough Antennas & Propagation Conference, 157-160, U.K., 2010.