Vol. 116
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-10-29
17-30 GHz Reliable and Compact Analog Phase Shifter Using Lateral Micromachined SP7T Switches, and DMTL Arrays
By
Progress In Electromagnetics Research C, Vol. 116, 157-169, 2021
Abstract
In this work, a radio frequency (RF) micro-electromechanical system (MEMS) based analog phase shifter is presented over 17-30 GHz. The proposed phase shifter is made using two back-to-back single-pole-seven-throw (SP7T) switches and connected through seven distributed MEMS transmission lines (DMTL). The SP7T switch is designed with lateral electrostatic actuation and demonstrates measured average return loss of > 11.3 dB, insertion loss of < 5.94 dB, and isolation of > 22 dB up to 30 GHz. Total area of the SP7T switch is only 0.89 mm2 including bias lines and pads. The proposed wide-band phase shifter can be tuned at all the frequencies between 17 and 30 GHz. Phase shifter gives measured average insertion loss of < 6.94 dB, return loss of > 10 dB, and phase error of ~10 at 17 GHz to 30 GHz over 500 MHz bandwidth. All phase shifts can be tracked with a resolution of 22.50 based on predefined actuation voltages. Total area of the fabricated device is ~11.72 mm2. In addition, switches and phase shifter work satisfactorily > 1 billion cycles with 0.1-1 W of RF power. The proposed phase shifter bank gives phase shifting performances at each frequency over 17-30 GHz with a constant resolution utilizing analog tuning, and it operates > 1 billion cycles of reliability with 1 W of RF power.
Citation
Sukomal Dey, Shiban Kishen Koul, Ajay K. Poddar, and Ulrich L. Rohde, "17-30 GHz Reliable and Compact Analog Phase Shifter Using Lateral Micromachined SP7T Switches, and DMTL Arrays," Progress In Electromagnetics Research C, Vol. 116, 157-169, 2021.
doi:10.2528/PIERC21082002
References

1. Lucyszyn, S., Advanced RF MEMS, Cambridge University Press, Aug. 2010.
doi:10.1017/CBO9780511781995

2. Muller, S., P. Scheele, C. Weil, M. Wittek, C. Hock, and R. Jakoby, "Tunable passive phase shifter for microwave applications using highly anisotropic liquid crystals," IEEE MTT-S Int. Microw. Symp. Dig., 1153-1156, Fort Worth, TX, USA, Jun. 2004.

3. Chang, Q., Q. Li, Z. Zhang, Q. Min, Y. Tong, and Y. Su, "A tunable broadband photonic RF phase shifter based on a silicon microring resonator," IEEE Photon. Technol. Lett., Vol. 21, No. 1, 60-62, Jan. 2003.
doi:10.1109/LPT.2008.2008658

4. Erker, G. E., S. A. Nagra, L. Yu, P. Periaswamy, R. T. Taylor, J. Speck, and R. A. York, "Monolithic Ka-band phase shifter using voltage tunable BaSrTiO3 parallel plate capacitors," IEEE Microw. Guided Wave Lett., Vol. 10, No. 1, 10-12, Jan. 2000.
doi:10.1109/75.842071

5. Rebeiz, G. M., RF MEMS Theory, Design, and Technology, Wiley, Hoboken, NJ, 2003.

6. Lee, S., J.-H. Park, H.-T. Kim, J.-M. Kim, Y.-K. Kim, and Y. Kwon, "Low-loss analog and digital re ection-type MEMS phase shifters with 1 : 3 bandwidth," IEEE Trans. Microw. Theory Techn., Vol. 52, No. 1, 211-219, Jan. 2004.
doi:10.1109/TMTT.2003.821275

7. Kang, D.-W., H. D. Lee, C.-H. Kim, and S. Hong, "Ku-band MMIC phase shifter using a parallel resonator with 0.18-m CMOS technology," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 1, 294-301, Jan. 2006.
doi:10.1109/TMTT.2005.860298

8. Koh, K.-J. and G. M. Rebeiz, "0.13-μm CMOS phase shifters for X-, Ku-, and K-band phased arrays," IEEE J. Solid-State Circuits, Vol. 42, No. 11, 2535-2546, Nov. 2007.
doi:10.1109/JSSC.2007.907225

9. Min, B. and G. M. Rebeiz, "Single-ended and differential-band BiCMOS phased array front-ends," IEEE J. Solid-State Circuits, Vol. 43, No. 10, 2239-2250, Oct. 2008.
doi:10.1109/JSSC.2008.2004336

10. Koh, K.-J. and G. M. Rebeiz, "A 6-18 GHz 5-bit active phase shifter," IEEE MTT-S Int. Microw. Symp. Dig., 792-795, Montreal, Anaheim, CA, May 2010.

11. Choi, J. Y., M.-K. Cho, D. Baek, and J.-G. Kim, "A 5-20 GHz 5-bit true time delay circuit in 0.18 μm CMOS technology," J. Semiconductor Tech. Science, Vol. 13, No. 3, 193-197, Jun. 2013.
doi:10.5573/JSTS.2013.13.3.193

12. Nordquist, C. D., C. W. Dyck, G. M. Kraus, C. T. Sullivan, F. Austin, P. S. Finnegan, and M. H. Ballance, "Ku-band six-bit RF MEMS time delay network," Compound Semiconductor Integrated Circuits Symposium, 2008, CSIC'08, IEEE, Oct. 2008.

13. Morton, M. A. and J. Papapolymerou, "A packaged MEMS-based 5-bit X-band high-pass/low-pass phase shifter," IEEE Trans. Microw. Theory Techn., Vol. 56, No. 9, 2025-2031, Aug. 2008.
doi:10.1109/TMTT.2008.2001959

14. Pillans, B., L. Coryell, A. Malczewski, C. Moody, F. Morris, and A. Brown, "Advances in RF MEMS phase shifters from 15 GHz to 35 GHz," IEEE MTT-S Int. Microw. Symp. Dig., 1-3, Montreal, QC, Canada, Jun. 2012.

15. Unlu, M., S. Demir, and T. Akin, "A 15-40-GHz frequency reconfigurable RF MEMS phase shifter," IEEE Trans. Microw. Theory Tech., Vol. 61, No. 8, 2397-2402, Aug. 2013.
doi:10.1109/TMTT.2013.2271995

16. Dey, S. and S. K. Koul, "Design and development of a CPW-based 5-bit switched-line phase shifter using inline metal contact MEMS series switches for 17.25 GHz transmit/receive module application," J. Micromech. Microeng., Vol. 24, No. 1, 24 pages, Nov. 2013.

17. Dey, S. and S. K. Koul, "Design, development and characterization of an X-band 5 bit DMTL phase shifter using an inline MEMS bridge and MAM capacitors," J. Micromech. Microeng., Vol. 24, No. 1, 15 pages, Jun. 2014.
doi:10.1088/0960-1317/24/1/015005

18. Dey, S. and S. K. Koul, "10-25-GHz frequency reconfigurable MEMS 5-bit phase shifter using push- pull actuator based toggle mechanism," J. Micromech. Microeng., Vol. 25, No. 6, 1-20, May 2015.
doi:10.1088/0960-1317/25/6/065011

19. Dey, S. and S. K. Koul, "Reliability analysis of Ku-band 5-bit phase shifters using MEMS SP4T and SPDT switches," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 9, 2863-2874, 2012.
doi:10.1109/TMTT.2012.2206050

20. Tan, G.-L., R. Mihailovich, J. Hacker, J. De Natale, and G. M. Rebeiz, "Low-loss 2- and 4-bit TTD MEMS phase shifters based on SP4T switches," IEEE Trans. Microw. Theory Techn., Vol. 51, No. 1, 297-304, Jan. 2003.
doi:10.1109/TMTT.2002.806509

21. Gong, S., H. Shen, and N. S. Barker, "A 60-GHz 2-bit switched-line phase shifter using SP4T RF-MEMS switches," IEEE Trans. Microw. Theory Techn., Vol. 59, No. 4, 894-900, Apr. 2011.
doi:10.1109/TMTT.2011.2112374

22. Baghchehsaraei, Z., A. Vorobyov, J. Åberg, E. Fourn, R. Sauleau, and J. Oberhammer, "Waveguide-integrated MEMS-based phase shifter for phased array antenna," IET Microw. Antennas Propag., Vol. 8, No. 4, 235-243, 2014.
doi:10.1049/iet-map.2013.0256

23. San, H. S., X. Y. Chen, P. Xu, G. Li, and L. X. Zhan, "Using metal insulator-semiconductor capacitor to investigate the charge accumulation in capacitive RF MEMS switches," Appl. Phys. Lett., Vol. 93, No. 6, 063506-1-063506-3, Aug. 2008.
doi:10.1063/1.2970043

24. Dey, S. and S. K. Koul, "Broadband, reliable and compact lateral MEMS SP4T and SP7T switching networks for 5G applications," IEEE MTTS International Microwave and RF Conference, Bombay, India, Dec. 13-15, 2019.

25. Dey, S., S. K. Koul, A. Poddar, and U. Rodhe, "Reliable and compact 3-bit and 4-bit phase shifters using MEMS SP4T and SP8T switches," IEEE J. Microelectromech. Syst., Vol. 27, No. 1, 113-124, Feb. 2018.
doi:10.1109/JMEMS.2017.2782780

26. Dey, S., S. K. Koul, A. K. Poddar, and U. L. Rodhe, "Compact, broadband and reliable lateral MEMS switching networks for 5G communications," Progress In Electromagnetic Research M, Vol. 86, 163-171, 2019.
doi:10.2528/PIERM19091703

27. Koul, S. K. and S. Dey, "MEMS K-band 4-bit phase shifter using two back to back SP16T switching networks," IEEE J. Microelectromech. Syst., Vol. 27, No. 4, 643-655, Feb. 2018.
doi:10.1109/JMEMS.2018.2834414

28. Mahameed, R. and G. M. Rebeiz, "A high-power temperature stable electrostatic RF MEMS capacitive switch based on thermal buckle-beam design," IEEE J. Microelectromech. Syst., Vol. 19, No. 4, 816-826, Aug. 2010.
doi:10.1109/JMEMS.2010.2049475

29. Dey, S. and S. K. Koul, "Reliable, compact, and tunable MEMS bandpass filter using arrays of series and shunt bridges for 28-GHz 5G applications," IEEE Trans. Microw. Theory Tech., Vol. 69, No. 1, 75-88, Jan. 2021.
doi:10.1109/TMTT.2020.3034182

30. Dey, S., S. K. Koul, A. K. Poddar, and U. L. Rohde, "Extensive performance evaluations of RFMEMS single-pole-multi-throw (SP3T to SP14T) switches up to X-band frequency," J. Micromech. Microeng., Vol. 27, No. 1, 10 pages, Nov. 2016.

31. Koul, S. K., S. Dey, A. K. Poddar, and U. L. Rohde, "Ka-band reliable and compact 3-bit true- time-delay phase shifter using MEMS single-pole-eight-throw switching networks," J. Micromech. Microeng., Vol. 26, No. 10, 9 pages, Aug. 2016.
doi:10.1088/0960-1317/26/10/104002

32. Liu, Y., Y. Bey, and X. Liu, "High-power high-isolation RF-MEMS switches with enhanced hot-switching reliability using a shunt protection technique," IEEE Trans. Microw. Theory Tech., Vol. 65, No. 9, 3188-3199, Mar. 2017.
doi:10.1109/TMTT.2017.2687427