Vol. 116

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2021-10-29

17-30 GHz Reliable and Compact Analog Phase Shifter Using Lateral Micromachined SP7T Switches, and DMTL Arrays

By Sukomal Dey, Shiban Kishen Koul, Ajay K. Poddar, and Ulrich L. Rohde
Progress In Electromagnetics Research C, Vol. 116, 157-169, 2021
doi:10.2528/PIERC21082002

Abstract

In this work, a radio frequency (RF) micro-electromechanical system (MEMS) based analog phase shifter is presented over 17-30 GHz. The proposed phase shifter is made using two back-to-back single-pole-seven-throw (SP7T) switches and connected through seven distributed MEMS transmission lines (DMTL). The SP7T switch is designed with lateral electrostatic actuation and demonstrates measured average return loss of > 11.3 dB, insertion loss of < 5.94 dB, and isolation of > 22 dB up to 30 GHz. Total area of the SP7T switch is only 0.89 mm2 including bias lines and pads. The proposed wide-band phase shifter can be tuned at all the frequencies between 17 and 30 GHz. Phase shifter gives measured average insertion loss of < 6.94 dB, return loss of > 10 dB, and phase error of ~10 at 17 GHz to 30 GHz over 500 MHz bandwidth. All phase shifts can be tracked with a resolution of 22.50 based on predefined actuation voltages. Total area of the fabricated device is ~11.72 mm2. In addition, switches and phase shifter work satisfactorily > 1 billion cycles with 0.1-1 W of RF power. The proposed phase shifter bank gives phase shifting performances at each frequency over 17-30 GHz with a constant resolution utilizing analog tuning, and it operates > 1 billion cycles of reliability with 1 W of RF power.

Citation


Sukomal Dey, Shiban Kishen Koul, Ajay K. Poddar, and Ulrich L. Rohde, "17-30 GHz Reliable and Compact Analog Phase Shifter Using Lateral Micromachined SP7T Switches, and DMTL Arrays," Progress In Electromagnetics Research C, Vol. 116, 157-169, 2021.
doi:10.2528/PIERC21082002
http://jpier.org/PIERC/pier.php?paper=21082002

References


    1. Lucyszyn, S., Advanced RF MEMS, Cambridge University Press, Aug. 2010.
    doi:10.1017/CBO9780511781995

    2. Muller, S., P. Scheele, C. Weil, M. Wittek, C. Hock, and R. Jakoby, "Tunable passive phase shifter for microwave applications using highly anisotropic liquid crystals," IEEE MTT-S Int. Microw. Symp. Dig., 1153-1156, Fort Worth, TX, USA, Jun. 2004.

    3. Chang, Q., Q. Li, Z. Zhang, Q. Min, Y. Tong, and Y. Su, "A tunable broadband photonic RF phase shifter based on a silicon microring resonator," IEEE Photon. Technol. Lett., Vol. 21, No. 1, 60-62, Jan. 2003.
    doi:10.1109/LPT.2008.2008658

    4. Erker, G. E., S. A. Nagra, L. Yu, P. Periaswamy, R. T. Taylor, J. Speck, and R. A. York, "Monolithic Ka-band phase shifter using voltage tunable BaSrTiO3 parallel plate capacitors," IEEE Microw. Guided Wave Lett., Vol. 10, No. 1, 10-12, Jan. 2000.
    doi:10.1109/75.842071

    5. Rebeiz, G. M., RF MEMS Theory, Design, and Technology, Wiley, Hoboken, NJ, 2003.

    6. Lee, S., J.-H. Park, H.-T. Kim, J.-M. Kim, Y.-K. Kim, and Y. Kwon, "Low-loss analog and digital re ection-type MEMS phase shifters with 1 : 3 bandwidth," IEEE Trans. Microw. Theory Techn., Vol. 52, No. 1, 211-219, Jan. 2004.
    doi:10.1109/TMTT.2003.821275

    7. Kang, D.-W., H. D. Lee, C.-H. Kim, and S. Hong, "Ku-band MMIC phase shifter using a parallel resonator with 0.18-m CMOS technology," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 1, 294-301, Jan. 2006.
    doi:10.1109/TMTT.2005.860298

    8. Koh, K.-J. and G. M. Rebeiz, "0.13-μm CMOS phase shifters for X-, Ku-, and K-band phased arrays," IEEE J. Solid-State Circuits, Vol. 42, No. 11, 2535-2546, Nov. 2007.
    doi:10.1109/JSSC.2007.907225

    9. Min, B. and G. M. Rebeiz, "Single-ended and differential-band BiCMOS phased array front-ends," IEEE J. Solid-State Circuits, Vol. 43, No. 10, 2239-2250, Oct. 2008.
    doi:10.1109/JSSC.2008.2004336

    10. Koh, K.-J. and G. M. Rebeiz, "A 6-18 GHz 5-bit active phase shifter," IEEE MTT-S Int. Microw. Symp. Dig., 792-795, Montreal, Anaheim, CA, May 2010.

    11. Choi, J. Y., M.-K. Cho, D. Baek, and J.-G. Kim, "A 5-20 GHz 5-bit true time delay circuit in 0.18 μm CMOS technology," J. Semiconductor Tech. Science, Vol. 13, No. 3, 193-197, Jun. 2013.
    doi:10.5573/JSTS.2013.13.3.193

    12. Nordquist, C. D., C. W. Dyck, G. M. Kraus, C. T. Sullivan, F. Austin, P. S. Finnegan, and M. H. Ballance, "Ku-band six-bit RF MEMS time delay network," Compound Semiconductor Integrated Circuits Symposium, 2008, CSIC'08, IEEE, Oct. 2008.

    13. Morton, M. A. and J. Papapolymerou, "A packaged MEMS-based 5-bit X-band high-pass/low-pass phase shifter," IEEE Trans. Microw. Theory Techn., Vol. 56, No. 9, 2025-2031, Aug. 2008.
    doi:10.1109/TMTT.2008.2001959

    14. Pillans, B., L. Coryell, A. Malczewski, C. Moody, F. Morris, and A. Brown, "Advances in RF MEMS phase shifters from 15 GHz to 35 GHz," IEEE MTT-S Int. Microw. Symp. Dig., 1-3, Montreal, QC, Canada, Jun. 2012.

    15. Unlu, M., S. Demir, and T. Akin, "A 15-40-GHz frequency reconfigurable RF MEMS phase shifter," IEEE Trans. Microw. Theory Tech., Vol. 61, No. 8, 2397-2402, Aug. 2013.
    doi:10.1109/TMTT.2013.2271995

    16. Dey, S. and S. K. Koul, "Design and development of a CPW-based 5-bit switched-line phase shifter using inline metal contact MEMS series switches for 17.25 GHz transmit/receive module application," J. Micromech. Microeng., Vol. 24, No. 1, 24 pages, Nov. 2013.

    17. Dey, S. and S. K. Koul, "Design, development and characterization of an X-band 5 bit DMTL phase shifter using an inline MEMS bridge and MAM capacitors," J. Micromech. Microeng., Vol. 24, No. 1, 15 pages, Jun. 2014.
    doi:10.1088/0960-1317/24/1/015005

    18. Dey, S. and S. K. Koul, "10-25-GHz frequency reconfigurable MEMS 5-bit phase shifter using push- pull actuator based toggle mechanism," J. Micromech. Microeng., Vol. 25, No. 6, 1-20, May 2015.
    doi:10.1088/0960-1317/25/6/065011

    19. Dey, S. and S. K. Koul, "Reliability analysis of Ku-band 5-bit phase shifters using MEMS SP4T and SPDT switches," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 9, 2863-2874, 2012.
    doi:10.1109/TMTT.2012.2206050

    20. Tan, G.-L., R. Mihailovich, J. Hacker, J. De Natale, and G. M. Rebeiz, "Low-loss 2- and 4-bit TTD MEMS phase shifters based on SP4T switches," IEEE Trans. Microw. Theory Techn., Vol. 51, No. 1, 297-304, Jan. 2003.
    doi:10.1109/TMTT.2002.806509

    21. Gong, S., H. Shen, and N. S. Barker, "A 60-GHz 2-bit switched-line phase shifter using SP4T RF-MEMS switches," IEEE Trans. Microw. Theory Techn., Vol. 59, No. 4, 894-900, Apr. 2011.
    doi:10.1109/TMTT.2011.2112374

    22. Baghchehsaraei, Z., A. Vorobyov, J. Åberg, E. Fourn, R. Sauleau, and J. Oberhammer, "Waveguide-integrated MEMS-based phase shifter for phased array antenna," IET Microw. Antennas Propag., Vol. 8, No. 4, 235-243, 2014.
    doi:10.1049/iet-map.2013.0256

    23. San, H. S., X. Y. Chen, P. Xu, G. Li, and L. X. Zhan, "Using metal insulator-semiconductor capacitor to investigate the charge accumulation in capacitive RF MEMS switches," Appl. Phys. Lett., Vol. 93, No. 6, 063506-1-063506-3, Aug. 2008.
    doi:10.1063/1.2970043

    24. Dey, S. and S. K. Koul, "Broadband, reliable and compact lateral MEMS SP4T and SP7T switching networks for 5G applications," IEEE MTTS International Microwave and RF Conference, Bombay, India, Dec. 13-15, 2019.

    25. Dey, S., S. K. Koul, A. Poddar, and U. Rodhe, "Reliable and compact 3-bit and 4-bit phase shifters using MEMS SP4T and SP8T switches," IEEE J. Microelectromech. Syst., Vol. 27, No. 1, 113-124, Feb. 2018.
    doi:10.1109/JMEMS.2017.2782780

    26. Dey, S., S. K. Koul, A. K. Poddar, and U. L. Rodhe, "Compact, broadband and reliable lateral MEMS switching networks for 5G communications," Progress In Electromagnetic Research M, Vol. 86, 163-171, 2019.
    doi:10.2528/PIERM19091703

    27. Koul, S. K. and S. Dey, "MEMS K-band 4-bit phase shifter using two back to back SP16T switching networks," IEEE J. Microelectromech. Syst., Vol. 27, No. 4, 643-655, Feb. 2018.
    doi:10.1109/JMEMS.2018.2834414

    28. Mahameed, R. and G. M. Rebeiz, "A high-power temperature stable electrostatic RF MEMS capacitive switch based on thermal buckle-beam design," IEEE J. Microelectromech. Syst., Vol. 19, No. 4, 816-826, Aug. 2010.
    doi:10.1109/JMEMS.2010.2049475

    29. Dey, S. and S. K. Koul, "Reliable, compact, and tunable MEMS bandpass filter using arrays of series and shunt bridges for 28-GHz 5G applications," IEEE Trans. Microw. Theory Tech., Vol. 69, No. 1, 75-88, Jan. 2021.
    doi:10.1109/TMTT.2020.3034182

    30. Dey, S., S. K. Koul, A. K. Poddar, and U. L. Rohde, "Extensive performance evaluations of RFMEMS single-pole-multi-throw (SP3T to SP14T) switches up to X-band frequency," J. Micromech. Microeng., Vol. 27, No. 1, 10 pages, Nov. 2016.

    31. Koul, S. K., S. Dey, A. K. Poddar, and U. L. Rohde, "Ka-band reliable and compact 3-bit true- time-delay phase shifter using MEMS single-pole-eight-throw switching networks," J. Micromech. Microeng., Vol. 26, No. 10, 9 pages, Aug. 2016.
    doi:10.1088/0960-1317/26/10/104002

    32. Liu, Y., Y. Bey, and X. Liu, "High-power high-isolation RF-MEMS switches with enhanced hot-switching reliability using a shunt protection technique," IEEE Trans. Microw. Theory Tech., Vol. 65, No. 9, 3188-3199, Mar. 2017.
    doi:10.1109/TMTT.2017.2687427