Vol. 115
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-08-18
A Novel Multilayer EBG Structure to Reconfigure the Band-Notch of UWB Monopole Printed Antenna
By
Progress In Electromagnetics Research C, Vol. 115, 27-40, 2021
Abstract
In high speed indoor communication, ultra-wideband (UWB) plays a crucial role. UWB contains several other narrow band systems, which give interference. In order to reject these narrow bands present in UWB system, a novel multilayer step via electromagnetic band gap (MS-EBG) structure to vary the band-notch of UWB monopole printed antenna is presented in this work. The proposed EBG consists of grooved substrate with step via arrangement. These grooved substrate allow for the deposition of the liquids with different dielectric constants to achieve the variations in band gap center frequency of EBG. The microstrip line based model with equivalent circuit diagram of MS-EBG is developed with experimental results using suspended micro strip line (SML) method, with different liquids like kerosene, sea water, mineral oil, without grooved substrate, etc. The simulated and experimental results show liquid sensing ability of the proposed MS-EBG structure. The application of MS-EBG to vary the band notch in UWB hexagonal monopole antenna (HMA) is also demonstrated. Simulated and experimental results show noticeable variation in the band notch center frequency with different liquids deposited in the grooved substrate. The proposed method required only liquid change arrangement to get desired band notch in UWB monopole antenna. Compared to electrical and mechanical method to get band notch in UWB monopole antenna, the proposed method works without any power supply, active devices and additional complex arrangement.
Citation
Kompella S. L. Parvathi, and Sudha R. Gupta, "A Novel Multilayer EBG Structure to Reconfigure the Band-Notch of UWB Monopole Printed Antenna," Progress In Electromagnetics Research C, Vol. 115, 27-40, 2021.
doi:10.2528/PIERC21061303
References

1. Liang, J., C. C. Chiau, X. Chen, and C. G. Parini, "Study of a printed circular disc monopole antenna for UWB systems," IEEE Trans. Antennas Propag., Vol. 53, No. 11, 3500-3504, 2005.
doi:10.1109/TAP.2005.858598

2. Srifi, M. N., S. K. Podilchak, M. Essaaidi, and Y. M. M. Antar, "Compact disc monopole antennas for current and future Ultrawideband (UWB) applications," IEEE Trans. Antennas Propag., Vol. 59, No. 12, 4470-4480, 2011.
doi:10.1109/TAP.2011.2165503

3. Cho, Y. J., K. H. Kim, D. H. Choi, S. S. Lee, and S.-O. Park, "A miniature UWB planar monopole antenna with 5-GHz band-rejection filter and the time-domain characteristics," IEEE Trans. Antennas Propag., Vol. 54, No. 5, 1453-1460, 2006.
doi:10.1109/TAP.2006.874354

4. Dong, Y. D., W. Hong, Z. Q. Kuai, and J. X. Chen, "Analysis of planar ultrawideband antennas with on-ground slot band-notched structures," IEEE Trans. Antennas Propag., Vol. 57, No. 07, 1886-1893, 2009.
doi:10.1109/TAP.2009.2021910

5. Chu, Q. X. and Y. Y. Yang, "A compact ultrawideband antenna with 3.4/5.5 GHz dual band- notched characteristics," IEEE Trans. Antennas Propag., Vol. 56, No. 12, 3637-3644, 2008.
doi:10.1109/TAP.2008.2007368

6. Ryu, K. S. and A. A. Kishk, "UWB antenna with single or dual band-notches for lower WLAN band and upper WLAN band," IEEE Trans. Antennas Propag., Vol. 57, No. 12, 3637-3644, 2008.

7. Abbosh, A. M. and M. E. Bialkowski, "Design of UWB planar band-notched antenna using parasitic elements," IEEE Trans. Antennas Propag., Vol. 57, No. 03, 796-799, 2009.
doi:10.1109/TAP.2009.2013449

8. Kim, K. H. and S. O. Park, "Analysis of the small band-rejected antenna with the parasitic strip for UWB," IEEE Trans. Antennas Propag., Vol. 54, No. 06, 1688-1692, 2006.
doi:10.1109/TAP.2006.875911

9. Lui, W. J., C. H. Cheng, Y. Cheng, and H. Zhu, "Frequency notched ultra-wideband microstrip slot antenna with fractal tuning stub," Electron. Lett., Vol. 41, No. 6, 294-296, 2005.
doi:10.1049/el:20058420

10. Gao, Y., B. L. Ooi, and A. P. Popov, "Band-notched ultra-wideband ring-monopole antenna," Microw. Opt. Technol. Lett., Vol. 48, No. 01, 125-126, 2006.
doi:10.1002/mop.21283

11. Thomas, K. G. and M. Sreenivasan, "A simple ultrawideband planar rectangular printed antenna with band dispensation," IEEE Trans. Antennas Propag., Vol. 58, No. 01, 27-34, 2010.
doi:10.1109/TAP.2009.2036279

12. Qu, S. W., J. L. Li, and Q. Xue, "A band-notched ultrawideband printed monopole antenna," IEEE Antennas Wireless Propag. Lett., Vol. 5, 495-498, 2006.
doi:10.1109/LAWP.2006.886303

13. Peng, L. and C. L. Ruan, "UWB band-notched monopole antenna design using electromagnetic-bandgap structures," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 4, 1074-1081, 2011.
doi:10.1109/TMTT.2011.2114090

14. Bhavarthe, P. P., S. S. Rathod, and K. T. V. Reddy, "A compact dual band gap electromagnetic band gap structure," IEEE Trans. Antennas Propag., Vol. 67, No. 01, 596-600, 2019.
doi:10.1109/TAP.2018.2874702

15. Bhavarthe, P. P., S. S. Rathod, and K. T. V. Reddy, "A compact two via hammer spanner-type polarization-dependent electromagnetic-bandgap structure," IEEE Microw. Wireless Compon. Lett., Vol. 28, No. 04, 284-286, 2018.
doi:10.1109/LMWC.2018.2809042

16. Zhang, L., S. Huang, Z. Huang, C. Liu, C. Wang, Z. Wan, X. Yu, and X. Wu, "Miniaturized notched ultra-wideband antenna based on EBG electromagnetic bandgap structure," Progress In Electromagnetics Research Letters, Vol. 91, 99-107, 2020.

17. Tang, M. C., H. Wang, T. Deng, and R. W. Ziolkowski, "Compact planar ultrawideband antennas with continuously tunable, independent band-notched filters," IEEE Trans. Antennas Propag., Vol. 64, No. 8, 3292-3301, 2016.
doi:10.1109/TAP.2016.2570254

18. Horestani, A. K., Z. Shaterian, J. Naqui, F. Martın, and C. Fumeaux, "Reconfigurable and tunable S-shaped split-ring resonators and application in band-notched UWB antennas," IEEE Trans. Antennas Propag., Vol. 64, No. 09, 3766-3776, 2016.
doi:10.1109/TAP.2016.2585183

19. Han, L., J. Chen, and W. Zhang, "Compact UWB monopole antenna with reconfigurable band-notch characteristics," International J. of Microwave and Wireless Tech., Vol. 12, No. 03, 252-258, 2020.
doi:10.1017/S1759078719001296

20. Shome, P. P., T. Khan, and R. H. Laskar, "CSRR-loaded UWB monopole antenna with electronically tunable triple band-notch characteristics for cognitive radio applications," Microw. Opt. Technol. Lett., Vol. 62, No. 09, 2919-2929, 2020.
doi:10.1002/mop.32394

21. Quddious, A., M. A. B. Abbasi, M. A. Antoniades, P. Vryonides, V. Fusco, and S. Nikolaou, "Dynamically reconfigurable UWB antenna using an FET switch powered by wireless RF harvested energy," IEEE Trans. Antennas Propag., Vol. 68, No. 08, 5872-5881, 2020.
doi:10.1109/TAP.2020.2988941

22. Nikolaou, S., N. D. Kingsley, G. E. Ponchak, J. Papapolymerou, and M. M. Tentzeris, "UWB elliptical monopoles with a reconfigurable band notch using MEMS switches actuated without bias lines," IEEE Trans. Antennas Propag., Vol. 57, No. 08, 2242-2251, 2009.
doi:10.1109/TAP.2009.2024450

23. Anagnostou, D. E., M. T. Chryssomallis, B. D. Braaten, J. L. Ebel, and N. Sepúlveda, "Reconfigurable UWB antenna with RF-MEMS for on-demand WLAN rejection," IEEE Trans. Antennas Propag., Vol. 62, No. 02, 602-608, 2014.
doi:10.1109/TAP.2013.2293145

24. Zheng, S. H., X. Liu, and M. M. Tentzeris, "Optically controlled reconfigurable band-notched UWB antenna for cognitive radio systems," Electron. Lett., Vol. 50, No. 21, 1502-1504, 2014.
doi:10.1049/el.2014.2226

25. Zhao, D., L. Lan, Y. Han, F. Liang, Q. Zhang, and B.-Z.Wang, "Optically controlled reconfigurable band-notched UWB antenna for cognitive radio applications," IEEE Photon. Technol. Lett., Vol. 26, No. 21, 2173-2176, 2014.
doi:10.1109/LPT.2014.2349961

26. Saha, C., L. A. Shaik, R. Muntha, Y. M. M. Antar, and J. Y. Siddiqui, "A dual reconfigurable printed antenna: Design concept and experimental realization," IEEE Antennas & Propag. Mag., Vol. 06, No. 03, 66-74, 2018.
doi:10.1109/MAP.2018.2819970

27. Haupt, R. L. and M. Lanagan, "Reconfigurable antennas," IEEE Antennas & Propag. Mag., Vol. 55, No. 01, 49-61, 2013.
doi:10.1109/MAP.2013.6474484

28. Sievenpiper, D., L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovith, "High impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 11, 2059-2074, 1999.
doi:10.1109/22.798001

29. Ghosh, S., T.-N. Tran, and T. Le-Ngoc, "Dual-layer EBG-based miniaturized multi-element antenna for MIMO systems," IEEE Trans. Antennas Propag., Vol. 62, No. 8, 3985-3997, 2014.
doi:10.1109/TAP.2014.2323410

30. Yang, F. and Y. Rahmat-Samii, "icrostrip antennas integrated with electromagnetic Band-Gap (EBG) structures: A low mutual coupling design for array applications," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 293-2946, 2003.

31. Parvathi, K. S. L., S. R. Gupta, and P. P. Bhavarthe, "A novel compact electromagnetic band gap structure to reduce the mutual coupling in multilayer MIMO antenna," Progress In Electromagnetics Research, Vol. 94, 167-177, 2020.
doi:10.2528/PIERM20051805

32. Jun, S. Y., B. S. Izquierdo, and E. A. Parker, "Liquid sensor/detector using an EBG structure," IEEE Trans. Antennas Propag., Vol. 67, No. 5, 3366-3373, 2019.
doi:10.1109/TAP.2019.2902663

33. Kiani, S., P. Rezaei, and M. Navaei, "Dual-sensing and dual frequency microwave SRR sensor for liquid samples permittivity detection," Elsevier Measurement, Vol. 160, Art. No. 107805, Aug. 2020.

34. Remski, R., "Analysis of photonic bandgap surfaces using ansoft HFSS," Microwave J., Vol. 43, No. 9, 190-199, 2000.

35. Liang, L., C. H. Liang, L. Chen, and X. Chen, "A novel broadband EBG using cascaded mushroom-like structure," Microw Opt. Technol Lett., Vol. 50, No. 08, 2167-2170, 2008.
doi:10.1002/mop.23598

36. Yang, L., M. Fan, F. Chen, J. She, and Z. Feng, "A novel compact Electromagnetic-Bandgap (EBG) structure and its application for microwave circuits," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 1, 183-190, 2005.
doi:10.1109/TMTT.2004.839322

37. Bhattacharya, A., B. Roy, S. K. Chowdhury, and A. K. Bhattacharjee, "Compact slotted UWB monopole antenna with tuneable band-notch characteristics," Microw Opt. Technol Lett., Vol. 59, No. 9, 2358-2365, 2017.
doi:10.1002/mop.30730