1. Liang, J., C. C. Chiau, X. Chen, and C. G. Parini, "Study of a printed circular disc monopole antenna for UWB systems," IEEE Trans. Antennas Propag., Vol. 53, No. 11, 3500-3504, 2005.
doi:10.1109/TAP.2005.858598
2. Srifi, M. N., S. K. Podilchak, M. Essaaidi, and Y. M. M. Antar, "Compact disc monopole antennas for current and future Ultrawideband (UWB) applications," IEEE Trans. Antennas Propag., Vol. 59, No. 12, 4470-4480, 2011.
doi:10.1109/TAP.2011.2165503
3. Cho, Y. J., K. H. Kim, D. H. Choi, S. S. Lee, and S.-O. Park, "A miniature UWB planar monopole antenna with 5-GHz band-rejection filter and the time-domain characteristics," IEEE Trans. Antennas Propag., Vol. 54, No. 5, 1453-1460, 2006.
doi:10.1109/TAP.2006.874354
4. Dong, Y. D., W. Hong, Z. Q. Kuai, and J. X. Chen, "Analysis of planar ultrawideband antennas with on-ground slot band-notched structures," IEEE Trans. Antennas Propag., Vol. 57, No. 07, 1886-1893, 2009.
doi:10.1109/TAP.2009.2021910
5. Chu, Q. X. and Y. Y. Yang, "A compact ultrawideband antenna with 3.4/5.5 GHz dual band- notched characteristics," IEEE Trans. Antennas Propag., Vol. 56, No. 12, 3637-3644, 2008.
doi:10.1109/TAP.2008.2007368
6. Ryu, K. S. and A. A. Kishk, "UWB antenna with single or dual band-notches for lower WLAN band and upper WLAN band," IEEE Trans. Antennas Propag., Vol. 57, No. 12, 3637-3644, 2008.
7. Abbosh, A. M. and M. E. Bialkowski, "Design of UWB planar band-notched antenna using parasitic elements," IEEE Trans. Antennas Propag., Vol. 57, No. 03, 796-799, 2009.
doi:10.1109/TAP.2009.2013449
8. Kim, K. H. and S. O. Park, "Analysis of the small band-rejected antenna with the parasitic strip for UWB," IEEE Trans. Antennas Propag., Vol. 54, No. 06, 1688-1692, 2006.
doi:10.1109/TAP.2006.875911
9. Lui, W. J., C. H. Cheng, Y. Cheng, and H. Zhu, "Frequency notched ultra-wideband microstrip slot antenna with fractal tuning stub," Electron. Lett., Vol. 41, No. 6, 294-296, 2005.
doi:10.1049/el:20058420
10. Gao, Y., B. L. Ooi, and A. P. Popov, "Band-notched ultra-wideband ring-monopole antenna," Microw. Opt. Technol. Lett., Vol. 48, No. 01, 125-126, 2006.
doi:10.1002/mop.21283
11. Thomas, K. G. and M. Sreenivasan, "A simple ultrawideband planar rectangular printed antenna with band dispensation," IEEE Trans. Antennas Propag., Vol. 58, No. 01, 27-34, 2010.
doi:10.1109/TAP.2009.2036279
12. Qu, S. W., J. L. Li, and Q. Xue, "A band-notched ultrawideband printed monopole antenna," IEEE Antennas Wireless Propag. Lett., Vol. 5, 495-498, 2006.
doi:10.1109/LAWP.2006.886303
13. Peng, L. and C. L. Ruan, "UWB band-notched monopole antenna design using electromagnetic-bandgap structures," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 4, 1074-1081, 2011.
doi:10.1109/TMTT.2011.2114090
14. Bhavarthe, P. P., S. S. Rathod, and K. T. V. Reddy, "A compact dual band gap electromagnetic band gap structure," IEEE Trans. Antennas Propag., Vol. 67, No. 01, 596-600, 2019.
doi:10.1109/TAP.2018.2874702
15. Bhavarthe, P. P., S. S. Rathod, and K. T. V. Reddy, "A compact two via hammer spanner-type polarization-dependent electromagnetic-bandgap structure," IEEE Microw. Wireless Compon. Lett., Vol. 28, No. 04, 284-286, 2018.
doi:10.1109/LMWC.2018.2809042
16. Zhang, L., S. Huang, Z. Huang, C. Liu, C. Wang, Z. Wan, X. Yu, and X. Wu, "Miniaturized notched ultra-wideband antenna based on EBG electromagnetic bandgap structure," Progress In Electromagnetics Research Letters, Vol. 91, 99-107, 2020.
17. Tang, M. C., H. Wang, T. Deng, and R. W. Ziolkowski, "Compact planar ultrawideband antennas with continuously tunable, independent band-notched filters," IEEE Trans. Antennas Propag., Vol. 64, No. 8, 3292-3301, 2016.
doi:10.1109/TAP.2016.2570254
18. Horestani, A. K., Z. Shaterian, J. Naqui, F. Martın, and C. Fumeaux, "Reconfigurable and tunable S-shaped split-ring resonators and application in band-notched UWB antennas," IEEE Trans. Antennas Propag., Vol. 64, No. 09, 3766-3776, 2016.
doi:10.1109/TAP.2016.2585183
19. Han, L., J. Chen, and W. Zhang, "Compact UWB monopole antenna with reconfigurable band-notch characteristics," International J. of Microwave and Wireless Tech., Vol. 12, No. 03, 252-258, 2020.
doi:10.1017/S1759078719001296
20. Shome, P. P., T. Khan, and R. H. Laskar, "CSRR-loaded UWB monopole antenna with electronically tunable triple band-notch characteristics for cognitive radio applications," Microw. Opt. Technol. Lett., Vol. 62, No. 09, 2919-2929, 2020.
doi:10.1002/mop.32394
21. Quddious, A., M. A. B. Abbasi, M. A. Antoniades, P. Vryonides, V. Fusco, and S. Nikolaou, "Dynamically reconfigurable UWB antenna using an FET switch powered by wireless RF harvested energy," IEEE Trans. Antennas Propag., Vol. 68, No. 08, 5872-5881, 2020.
doi:10.1109/TAP.2020.2988941
22. Nikolaou, S., N. D. Kingsley, G. E. Ponchak, J. Papapolymerou, and M. M. Tentzeris, "UWB elliptical monopoles with a reconfigurable band notch using MEMS switches actuated without bias lines," IEEE Trans. Antennas Propag., Vol. 57, No. 08, 2242-2251, 2009.
doi:10.1109/TAP.2009.2024450
23. Anagnostou, D. E., M. T. Chryssomallis, B. D. Braaten, J. L. Ebel, and N. Sepúlveda, "Reconfigurable UWB antenna with RF-MEMS for on-demand WLAN rejection," IEEE Trans. Antennas Propag., Vol. 62, No. 02, 602-608, 2014.
doi:10.1109/TAP.2013.2293145
24. Zheng, S. H., X. Liu, and M. M. Tentzeris, "Optically controlled reconfigurable band-notched UWB antenna for cognitive radio systems," Electron. Lett., Vol. 50, No. 21, 1502-1504, 2014.
doi:10.1049/el.2014.2226
25. Zhao, D., L. Lan, Y. Han, F. Liang, Q. Zhang, and B.-Z.Wang, "Optically controlled reconfigurable band-notched UWB antenna for cognitive radio applications," IEEE Photon. Technol. Lett., Vol. 26, No. 21, 2173-2176, 2014.
doi:10.1109/LPT.2014.2349961
26. Saha, C., L. A. Shaik, R. Muntha, Y. M. M. Antar, and J. Y. Siddiqui, "A dual reconfigurable printed antenna: Design concept and experimental realization," IEEE Antennas & Propag. Mag., Vol. 06, No. 03, 66-74, 2018.
doi:10.1109/MAP.2018.2819970
27. Haupt, R. L. and M. Lanagan, "Reconfigurable antennas," IEEE Antennas & Propag. Mag., Vol. 55, No. 01, 49-61, 2013.
doi:10.1109/MAP.2013.6474484
28. Sievenpiper, D., L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovith, "High impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 11, 2059-2074, 1999.
doi:10.1109/22.798001
29. Ghosh, S., T.-N. Tran, and T. Le-Ngoc, "Dual-layer EBG-based miniaturized multi-element antenna for MIMO systems," IEEE Trans. Antennas Propag., Vol. 62, No. 8, 3985-3997, 2014.
doi:10.1109/TAP.2014.2323410
30. Yang, F. and Y. Rahmat-Samii, "icrostrip antennas integrated with electromagnetic Band-Gap (EBG) structures: A low mutual coupling design for array applications," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 293-2946, 2003.
31. Parvathi, K. S. L., S. R. Gupta, and P. P. Bhavarthe, "A novel compact electromagnetic band gap structure to reduce the mutual coupling in multilayer MIMO antenna," Progress In Electromagnetics Research, Vol. 94, 167-177, 2020.
doi:10.2528/PIERM20051805
32. Jun, S. Y., B. S. Izquierdo, and E. A. Parker, "Liquid sensor/detector using an EBG structure," IEEE Trans. Antennas Propag., Vol. 67, No. 5, 3366-3373, 2019.
doi:10.1109/TAP.2019.2902663
33. Kiani, S., P. Rezaei, and M. Navaei, "Dual-sensing and dual frequency microwave SRR sensor for liquid samples permittivity detection," Elsevier Measurement, Vol. 160, Art. No. 107805, Aug. 2020.
34. Remski, R., "Analysis of photonic bandgap surfaces using ansoft HFSS," Microwave J., Vol. 43, No. 9, 190-199, 2000.
35. Liang, L., C. H. Liang, L. Chen, and X. Chen, "A novel broadband EBG using cascaded mushroom-like structure," Microw Opt. Technol Lett., Vol. 50, No. 08, 2167-2170, 2008.
doi:10.1002/mop.23598
36. Yang, L., M. Fan, F. Chen, J. She, and Z. Feng, "A novel compact Electromagnetic-Bandgap (EBG) structure and its application for microwave circuits," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 1, 183-190, 2005.
doi:10.1109/TMTT.2004.839322
37. Bhattacharya, A., B. Roy, S. K. Chowdhury, and A. K. Bhattacharjee, "Compact slotted UWB monopole antenna with tuneable band-notch characteristics," Microw Opt. Technol Lett., Vol. 59, No. 9, 2358-2365, 2017.
doi:10.1002/mop.30730