Vol. 113
Latest Volume
All Volumes
PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-05-31
Investigating the Equivalent Source and the Plane Wave Spectrum Methods in Predicting the Magnetic Field Behavior in the Vicinity of Microstrip Patch Antenna for Bluetooth and Wi-Fi Applications
By
Progress In Electromagnetics Research C, Vol. 113, 29-46, 2021
Abstract
Over the past few years, the continuous evolution of embedded electronic systems has increased electromagnetic interferences problems. It has also generated a new design constraint on electromagnetic compatibility. Hence, predicting the electromagnetic field behavior in the vicinity of the electronic components and systems becomes a priority to avoid the potential for unwanted coupling occurrence, as well as to ensure the electromagnetic compatibility compliance for those components and systems which are embedded in a confined space. As a result, the designers of electronics' equipment are extremely interested in radiated emission models. This paper reports a comparative study in which two different methods will be applied: the equivalent source method and plane wave spectrum method. These two methods will be used to predict the magnetic field behavior in the vicinity of a microstrip patch antenna. The latter works in ISM band for Wi-Fi and Bluetooth applications. The two applied models are constructed from the tangential magnetic fields cartographies of the antenna obtained from HFSS® at 3.5 mm and validated by comparing the HFSS® results with those of the models at a higher elevation. Furthermore, the relative error between the simulated field of the antenna and those of the equivalent source model according to the dipoles number is presented to determine the minimum number of dipoles that allow users to obtain the results with better accuracy. Subsequently, the relative error as function of different elevations along the z axis together with the two methods comparison results is presented.
Citation
Mohamed Amine Benchana, Abdesselam Babouri, Zouheir Riah, Abderrezak Khalfallaoui, Abdelaziz Ladjimi, and Jamel Nebhen, "Investigating the Equivalent Source and the Plane Wave Spectrum Methods in Predicting the Magnetic Field Behavior in the Vicinity of Microstrip Patch Antenna for Bluetooth and Wi-Fi Applications," Progress In Electromagnetics Research C, Vol. 113, 29-46, 2021.
doi:10.2528/PIERC21033002
References

1. The McClean ReportIC Insights 2020, [Online], Available, https://www.icinsights.com/news/ bulletins/Total-Microprocessor-Sales-To-Edge-Slightly-Higher-In-2020/..

2. Martin, L. P., "Wi-Fi is an important threat to human health," Environmental Research, Vol. 164, 405-416, Mar. 2018.
doi:10.1016/j.envres.2018.03.037

3. Labussiere, D. C., S. Bekndhia, E. Sicard, J. Tao, H. J. Quaresma, C. Lochot, and B. Virgnon, "Modeling the electromagnetic emission of a microcontroller using a single model," IEEE Transactions on Electromagnetic Compatibility, Vol. 50, No. 1, 22-34, Feb. 2008.
doi:10.1109/TEMC.2007.911918

4. Petre, P. and T. Sarkar, "Planar near-field to far-field transformation using an equivalent magneticcurrent approach," IEEE Transactions on Antennas and Propagation, Vol. 40, No. 11, 1348-1356, Nov. 1992.
doi:10.1109/8.202712

5. Alvarez, Y., F. Las-Heras, and M. R. Pino, "Reconstruction of equivalent currents distribution overarbitrary three-dimensional surfaces based on integral equation algorithms," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 12, 3460-3468, Dec. 2007.
doi:10.1109/TAP.2007.910316

6. Vives, G. Y., "Mod´elisation des´emissions rayonn´ees de composants ´electroniques,", Universite de Rouen, Rouen, FR, 2007.

7. Vives, G. Y., C. Arcambal, A. Louis, F. de Daran, P. Eudeline, and B. Mazari, "Modeling magnetic radiations of electronic circuits using near-field scanning method," IEEE Transactions on Electromagnetic Compatibility, Vol. 49, No. 2, 391-400, May 2007.
doi:10.1109/TEMC.2006.890168

8. Ramanujan, A., Z. Riah, A. Louis, and B. Mazari, "Computational optimizations towards an accurate and rapid electromagnetic emission modeling," Progress In Electromagnetics Research B, Vol. 27, 365-384, Jan. 2011.
doi:10.2528/PIERB10121605

9. Fernandez, L. P., C. Arcambal, D. Baudry, and S. Verdeyme, "Simple electromagnetic modeling procedure: From near-field measurements to commercial electromagnetic simulation Tool," IEEE Transactions on Instrumentation and Measurement, Vol. 59, No. 12, 3111-3121, Dec. 2010.
doi:10.1109/TIM.2010.2063070

10. Fernandez, P. L., C. Arcambal, and D. Baudry, "3D modeling of radiated emission of electronic components," 3th Workshop Embedded EMC 2EMC, Nov. 2010.

11. Shall, H., Z. Riah, and M. Kadi, "A 3-D near-field modeling approach for electromagnetic interference prediction," IEEE Transactions on Electromagnetic Compatibility, Vol. 56, No. 1, 102-112, Feb. 2014.
doi:10.1109/TEMC.2013.2274576

12. Shall, H., Z. Riah, and M. Kadi, "rediction of 3D-near field coupling between a toro¨ıdal inductor and a transmission line," IEEE International Symposium on Electromagnetic Compatibility, 651-656, Denver, CO, USA, 2013.

13. Jonas, K., R. A. M. Mauermayer, O. Neitz, J. Knapp, and T. F. Eibert, "On the solution of inverse equivalent surface-source problems," Progress In Electromagnetics Research, Vol. 165, 47-65, 2019.

14. Riah, Z., "Caracterisation et Modelisation des Phenomenes Radiatifs en Champ Proche des Composants et des Dispositifs Electroniques, Rapport HDR,", Universite de Rouen, FR, 2015.

15. Baudry, D., M. Kadi, Z. Riah, C. Arcambal, Y. V. Gilabert, A. Louis, and B. Mazari, "Plane wave spectrum theory applied to near-field measurements for electromagnetic compatibility investigations," IET Science Measurement and Technology, Vol. 3, No. 1, 72-83, Jun. 2008.
doi:10.1049/iet-smt:20080026

16. Volski, V., B. Ravelo, V. A. E. Vandenbosch, and D. Pissoort, "Investigation on planar near-to-far-field transformations for EMC applications," European Conference on Antennas and Propagation, Lisbon, Portugal, 2015.

17. Brahimi, R., A. Kornaga, M. Bensetti, D. Baudry, Z. Riah, A. Louis, and B. Mazari, "Postprocessing of near-field measurement based on neural networks," IEEE Transactions on Instrumentation and Measurement, Vol. 60, No. 2, 539-546, Feb. 2011.
doi:10.1109/TIM.2010.2050373

18. Tourab, W., A. Babouri, and M. Nemamcha, "Experimental study of electromagnetic environment in the vicinity of high voltage lines," American Journal of Engineering and Applied Sciences, Vol. 4, 209-213, Jan. 2011.
doi:10.3844/ajeassp.2011.209.213

19. Tourab, W., A. Babouri, and M. Nemamcha, "Characterization of the electromagnetic environment at the vicinity of power lines," International Conference on Electricity Distribution, Frankfurt, Germany, Jun. 2011.

20. Tourab, W., A. Babouri, and M. Nemamcha, "Characterization of high voltage power lines as source of electromagnetic disturbance," International Conference and Exhibition on Electromagnetic Compatibility, Rouen, France, Apr. 2012.

21. Babouri, A., A. Hedjiedj, and L. Guendouz, "Experimental and theoretical investigation of implantable cardiac pacemaker exposed to low frequency magnetic field," Journal of Clinical Monitoring and Computing, Vol. 23, No. 2, 63-73, Apr. 2009.
doi:10.1007/s10877-008-9157-5

22. Babouri, A. and A. Hedjiedj, "In vitro investigation of eddy current effect on pacemaker operation generated by low frequency magnetic field," International Conference of the IEEE Engineering in Medicine and Biology Society, 23-26, Lyon, France, 2007.

23. Tourab, W. and A. Babouri, "Measurement and modeling of personal exposure to the electric and magnetic fields in the vicinity of high voltage power lines," Safety and Health at Work, Vol. 7, No. 2, 102-110, Jun. 2016.
doi:10.1016/j.shaw.2015.11.006

24. Rachedi, A. B., A. Babouri, and X. Zhang, "Electromagnetic pollution inside high-voltage substation," Revue Roumaine de Sciences Techniques, Vol. 61, No. 2, 178-182, Jul. 2016.

25. Coccioli, R., F.-R. Yang, K.-P. Ma, and T. Itoh, "Aperture-coupled patch antenna on UC-PBG substrate," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2123-2130, Nov. 1999.
doi:10.1109/22.798008

26. Chouksey, V. and G. Puran, "Review of micro strip patch antenna characteristics analysis and bandwidth enhancement by using U slot microstrip patch antenna," Communications on Applied Electronics, Vol. 7, 37-41, Nov. 2017.

27. Irfan, N., C. E. Y. Mustapha, and K. Hettak, "Design of a microstrip-line-fed inset patch antenna for RFID applications," International Journal of Engineering and Technology, Vol. 4, No. 5, 558-561, Oct. 2012.
doi:10.7763/IJET.2012.V4.432