Vol. 110
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-03-12
The Performance of Circularly Polarized Phased Sub-Array Antennas for 5G Laptop Devices Investigating the Radiation Effects
By
Progress In Electromagnetics Research C, Vol. 110, 267-283, 2021
Abstract
In this paper, the performance of circularly polarized (CP) adaptive sub-arrays integrated into 5G laptop device is investigated in the presence of a whole-body human phantom model. In addition, the radiation effect of the steered beam patterns has been analyzed by calculating the specific absorption rate distribution and temperature rise. In this target, a single-feed CP antenna element has been firstly designed to resonate at 28 GHz with high realized gain and radiation efficiency. Then, 4 sub-arrays have been constructed in a rectangular configuration with four-elements for each sub-array. To let the study more realistic, a complete human model is considered to investigate the radiation effects. The measured reflection coefficient and realized gain results of the designed antenna element are found to be -30 dB and 7.82 dB, respectively, in the assigned frequency band. Likewise, the antennas sub-arrays have approximately kept the same impedance matching attitude with high insertion loss of -22 dB and a realized gain and radiation efficiency of 16.85 dB and 86%, respectively, on average. Furthermore, the sub-arrays scan patterns and coverage efficiency has been studied considering the existence of the human body in different scenarios. Regarding the RF exposure, the results show that the resultant maximum values of specific absorption rate and power density do not exceed 1.52 W/Kg and 3.5 W/m2, respectively, whereas, the maximum exposure temperature in such a case is less than 2.8°C after 30 minutes and decreases to 0.5°C after a penetration depth of 3 mm which reflects the possibility of safe use.
Citation
Korany Mahmoud, Abdullah Baz, Wajdi Alhakami, Hosam Alhakami, and Ahmed Mohamed Montaser, "The Performance of Circularly Polarized Phased Sub-Array Antennas for 5G Laptop Devices Investigating the Radiation Effects," Progress In Electromagnetics Research C, Vol. 110, 267-283, 2021.
doi:10.2528/PIERC21012005
References

1. Sarraf, S., "5G will significantly impact the tech industry," American Scientific Research Journal for Engineering, Technology, and Sciences, Vol. 55, No. 1, 75-82, May 2019.

2. Accessed: Jan. 2021, [Online], , Available: https://www.delltech-nologies.com/enus/latitude/latitude-9510-coming-soon.htm.

3. Accessed: Jan. 2021, [Online], , Available: https://www8.hp.com/us/en/laptops/2-in-1s/elitedragonfly-convertible.html.

4. Accessed: Jan. 2021, [Online], , Available: https://www.lenovo.com/gb/en/laptops/yoga/yoga-cseries/Lenovo-Yoga-5G-p/88YGC801370.

5. Accessed: Jan. 2021, [Online], , Available: https://news.itu.int/wrc-19-agrees-to-identify-newfrequency-bands-for-5g/.

6. Naqvi, A. H. and S. Lim, "Review of recent phased arrays for millimeter-wave wireless communication," MDPI Sensors (Basel), Vol. 18, No. 10, 1-31, Oct. 2018.

7. Mahmoud, K. R. and A. M. Montaser, "Optimised 4×4 millimetre-wave antenna array with DGS using hybrid ECFO-NM algorithm for 5G mobile networks," IET Microw., Antennas Propag., Vol. 11, No. 11, 1516-1523, Aug. 2017.
doi:10.1049/iet-map.2016.0959

8. Mahmoud, K. R. and A. M. Montaser, "Design of compact mm-wave tunable filtenna using capacitor loaded trapezoid slots in ground plane for 5G router applications," IEEE Access, Vol. 8, 27715-27723, 2020.
doi:10.1109/ACCESS.2020.2971606

9. Balanis, C. A., Antenna Theory: Analysis and Design, John Wiley & Sons, 2016.

10. Hesari, S. S. and J. Bornemann, "Wideband circularly polarized substrate integrated waveguide endfire antenna system with high gain," IEEE Antennas Wireless Propag. Lett., Vol. 16, 2262-2265, 2017.
doi:10.1109/LAWP.2017.2713720

11. Hussain, N., M.-J. Jeong, J. Park, and N. Kim, "A broadband circularly polarized Fabry Perot resonant antenna using a single-layered PRS for 5G MIMO applications," IEEE Access, Vol. 7, 42897-42907, 2019.
doi:10.1109/ACCESS.2019.2908441

12. Lin, Q. W., H. Wong, X. Y. Zhang, and H. W. Lai, "Printed meandering probe-fed circularly polarized patch antenna with wide bandwidth," IEEE Antennas Wireless Propag. Lett., Vol. 13, 654-657, 2014.

13. Hussain, N., M. Jeong, A. Abbas, T. Kim, and N. Kim, "A metasurface-based low-profile wideband circularly polarized patch antenna for 5G millimeter-wave systems," IEEE Access, Vol. 8, 22127-22135, 2020.
doi:10.1109/ACCESS.2020.2969964

14. Mahmoud, K. R. and A. M. Montaser, "Synthesis of multi-polarised upside conical frustum array antenna for 5G mm-wave base station at 28/38 GHz," IET Microwave Antennas Propag., Vol. 12, No. 9, 1559-1569, Jul. 2018.
doi:10.1049/iet-map.2017.1138

15. Accessed: Jan. 2021, [Online], , Available: https://www.micro-wavejournal.com/articles/27830-ibmand-ericsson-announce-5g-mmwave-phase-array-antenna-module.

16. Mahmoud, K. R. and A. M. Montaser, "Performance of tri-band multi polarized array antenna for 5G mobile base station adopting polarization and directivity control," IEEE Access, Vol. 6, 8682-8694, 2018.
doi:10.1109/ACCESS.2018.2805802

17. Xu, B., et al., "Power density measurements at 15GHz for RF EMF compliance assessments of 5G user equipment," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 6584-6595, Dec. 2017.
doi:10.1109/TAP.2017.2712792

18. Colombi, D., B. Thors, C. T¨ornevik, and Q. Balzano, "RF energy absorption by biological tissues in close proximity to millimeter-wave 5G wireless equipment," IEEE Access, Vol. 6, 4974-4981, 2018.
doi:10.1109/ACCESS.2018.2790038

19. Xu, B., M. Gustafsson, S. Shi, K. Zhao, Z. Ying, and S. He, "Radio frequency exposure compliance of multiple antennas for cellular equipment based on semidefinite relaxation," IEEE Trans. Electromagn. Compat., Vol. 61, No. 2, 327-336, Apr. 2019.
doi:10.1109/TEMC.2018.2832445

20. Colombi, D., B. Thors, and C. Tornevik, "Implications of EMF exposure limits on output power levels for 5G devices above 6 GHz," IEEE Antennas Wireless Propag. Lett., Vol. 14, 1247-1249, 2015.
doi:10.1109/LAWP.2015.2400331

21. Zhao, K., Z. Ying, and S. He, "EMF exposure study concerning mmWave phased array in mobile devices for 5G communication," IEEE Antennas Wireless Propag. Lett., Vol. 15, 1132-1135, 2016.
doi:10.1109/LAWP.2015.2496229

22. He, W., B. Xu, M. Gustafsson, Z. Ying, and S. He, "RF compliance study of temperature elevation in human head model around 28 GHz for 5G user equipment application: Simulation analysis," IEEE Access, Vol. 6, 830-838, 2018.
doi:10.1109/ACCESS.2017.2776145

23. Thors, B., D. Colombi, Z. Ying, T. Bolin, and C. Tornevik, "Exposure to RF EMF from array antennas in 5G mobile communication equipment," IEEE Access, Vol. 4, 7469-7478, 2016.
doi:10.1109/ACCESS.2016.2601145

24. Mahmoud, K. R. and A. M. Montaser, "Design of dual-band circularly polarised array antenna package for 5G mobile terminals with beam-steering capabilities," IET Microwave Antennas Propag., Vol. 12, No. 1, 29-39, 2018.
doi:10.1049/iet-map.2017.0412

25. Hamed, T. and M. Maqsood, "SAR calculation & temperature response of human body exposure to electromagnetic radiations at 28, 40 and 60 GHz mmWave frequencies," Progress In Electromagnetics Research M, Vol. 73, 47-59, 2018.
doi:10.2528/PIERM18061102

26. Zhadobov, M., N. Chahat, R. Sauleau, C. L. Quement, and Y. L. Drean, "Millimeter-wave interactions with the human body: State of knowledge and recent advances," International Journal of Microwave and Wireless Technologies, Vol. 3, No. 2, 237-247, 2011.
doi:10.1017/S1759078711000122

27. International Commission on Non-Ionizing Radiation Protection "Guidelines for limiting exposure to electromagnetic fields (100 kHz to 300 GHz)," Health Physics, Vol. 118, No. 5, 483-524, 2020.
doi:10.1097/HP.0000000000001210

28. IEEE Standards Coordinating Committee, 28, "IEEE standard for safety levels with respect to human exposure to electric, magnetic, and electromagnetic fields, 0 Hz to 300 GHz," IEEE C95.1TM-(2019), 1-310, 2019.

29. Wu, T., T. S. Rappaport, and C. M. Collins, "Safe for generations to come: Considerations of safety for millimeter waves in wireless communications," IEEE Microwave Mag., Vol. 16, No. 2, 65-84, Mar. 2015.
doi:10.1109/MMM.2014.2377587

30. Shrivastava, P. and T. R. Rao, "Investigations of SAR distributions and temperature elevation on human body at 60GHz with corrugated antipodal linear tapered slot antenna," Progress In Electromagnetics Research M, Vol. 59, 111-121, 2017.
doi:10.2528/PIERM17041707

31. Zhang, W.-X., J. Wang, R. Tao, H.-L. Peng, G. Guo, and J.-F. Mao, "A simplified model of specific absorption rate calculation for laptop mounted equipment in near proximity to human torso," Journal of Electromagnetic Waves and Applications, Vol. 26, 757-769, 2012.
doi:10.1080/09205071.2012.710805

32. Ahmed, M. I., M. F. Ahmed, and A. H. A. Shaalan, "SAR calculations of novel textile dual-layer UWB lotus antenna for astronauts spacesuit," Progress In Electromagnetics Research C, Vol. 82, 135-144, 2018.
doi:10.2528/PIERC18010911

33. Montaser, A. M., K. Mahmoud, and H. A. Elmikati, "An interaction study between PIFAs handset antenna and a human hand-head in personal communications," Progress In Electromagnetics Research B, Vol. 37, 21-42, 2012.
doi:10.2528/PIERB11091514

34. Kong, L.-Y., J. Wang, and W.-Y. Yin, "A novel dielectric conformal FDTD method for computing SAR distribution of the human body in a metallic cabin illuminated by an intentional electromagnetic pulse (IEMP)," Progress In Electromagnetics Research, Vol. 126, 355-373, 2012.
doi:10.2528/PIER11112702

35. Sabbah, A. I., N. I. Dib, and M. A. Al-Nimr, "Evaluation of specific absorption rate and temperature elevation in a multi-layered human head model exposed to radio frequency radiation using the finite difference time domain method," IET Microwave Antennas Propag., Vol. 5, No. 9, 1073-1080, 2011.
doi:10.1049/iet-map.2010.0172

36. Azim, R., M. T. Islam, and N. Misran, "Ground modified double-sided printed compact UWB antenna," Electronics Letters, Vol. 47, No. 1, 9-11, 2011.
doi:10.1049/el.2010.3160

37. Nguyen, N. L., "Gain enhancement in MIMO antennas using defected ground structure," Progress In Electromagnetics Research M, Vol. 87, 127-136, 2019.
doi:10.2528/PIERM19091102

38. Accessed: Oct. 2019, [Online], , Available: https://itis.swiss/virtual-population/virtual-population/overview/.

39. Accessed: Dec. 2019, [Online], , Available: https://www.3ds.com/products-services/simulia/products/cst-studio-suite/.

40. Stephen, J. P. and D. J. Hemanth, "An investigation on specific absorption rate reduction materials with human tissue cube for biomedical applications," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, No. 12, 1-19, 2019.
doi:10.1002/mmce.21960

41. Islam, M. T., M. R. I. Faruque, and N. Misran, "Reduction of specific absorption rate (SAR) in the human head with ferrite material and metamaterial," Progress In Electromagnetics Research C, Vol. 9, 47-58, 2009.
doi:10.2528/PIERC09062303

42. Montgomery, M. T., M. C. Frank, P. A. Tornatta, Jr., M. W. Kishler, and L. Chen, Methods for reducing near-field radiation and specific absorption rate (SAR) values in communications devices, U.S. Patent 8,344,956, issued January 1, 2013.

43. Nevermann, P., System and method for reducing SAR values, U.S. Patent 7,146,139, issued December 5, 2006.