Vol. 109

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2021-02-14

Wide Bandwidth Low Profile PIFA Antenna for Vehicular Sub-6 GHz 5G and V2X Wireless Systems

By Ahmad Yacoub, Mohamed Khalifa, and Daniel N. Aloi
Progress In Electromagnetics Research C, Vol. 109, 257-273, 2021
doi:10.2528/PIERC21010609

Abstract

This paper introduces a low profile wideband Planar Inverted-F antenna (PIFA) for vehicular applications in the 5G systems (below 6 GHz) and Vehicle-to-Everything (V2X) communications. The antenna covers a wide range of bandwidth which operates from 617 MHz to 6 GHz while having an acceptable filtering on the GNSS bands. This design's physical dimensions and electrical performance make it suitable for low profile wireless applications in the automotive field. Measurement data on Ground plane (GND) and on vehicle are presented from a properly cut metal sheet prototype along with simulated results of the model design. Simulation and measurement results are discussed in terms of VSWR, surface current distribution, radiation patterns, antenna efficiency, and linear average gain (LAG).

Citation


Ahmad Yacoub, Mohamed Khalifa, and Daniel N. Aloi, "Wide Bandwidth Low Profile PIFA Antenna for Vehicular Sub-6 GHz 5G and V2X Wireless Systems," Progress In Electromagnetics Research C, Vol. 109, 257-273, 2021.
doi:10.2528/PIERC21010609
http://jpier.org/PIERC/pier.php?paper=21010609

References


    1. Abboud, K., H. A. Omar, and W. Zhuang, "Interworking of DSRC and cellular network technologies for V2X communications: A survey," IEEE Transactions on Vehicular Technology, Vol. 65, No. 12, 9457-9470, Dec. 2016.
    doi:10.1109/TVT.2016.2591558

    2. Wang, C., J. Bian, J. Sun, W. Zhang, and M. Zhang, "A survey of 5G channel measurements and models," IEEE Communications Surveys & Tutorials, Vol. 20, No. 4, 3142-3168, Fourth quarter 2018.
    doi:10.1109/COMST.2018.2862141

    3. Ghafari, E., A. Fuchs, D. Eblenkamp, and D. N. Aloi, "A vehicular rooftop, shark-fin, multiband antenna for the GPS/LTE/cellular/DSRC systems," 2014 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), 237-240, Palm Beach, 2014.

    4., https://www.its.dot.gov/research archives/connected vehicle/pdf/DSRCReportCongress FINAL 23NOV2015.pdf.

    5. Arianos, S., G. Dassano, F. Vipiana, and M. Orefice, "Design of multi-frequency compact antennas for automotive communications," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 12, 5604-5612, Dec. 2012.
    doi:10.1109/TAP.2012.2213052

    6. Artner, G., W. Kotterman, G. Del Galdo, and M. A. Hein, "Automotive antenna roof for cooperative connected driving," IEEE Access, Vol. 7, 20083-20090, 2019.
    doi:10.1109/ACCESS.2019.2897219

    7. Chattha, H., Y. Huang, X. Zhu, and Y. Lu, "An empirical equation for predicting the resonant frequency of planar inverted-F antennas," Antennas and Wireless Propagation Letters, Vol. 8, 856-860, IEEE, 10.1109/LAWP.2009.2027822, 2009.

    8. Yang, L., N. Liu, Z. Zhang, G. Fu, Q. Liu, and S.-L. Zuo, "A novel single feed omnidirectional circularly polarized antenna with wide AR bandwidth," Progress In Electromagnetics Research C, Vol. 51, 35-43, 2014.

    9. Valagiannopoulos, C., "Single-series solution to the radiation of loop antenna in the presence of a conducting sphere," Progress In Electromagnetics Research, Vol. 71, 277-294, 2007.
    doi:10.2528/PIER07030803

    10. Narbudowicz, A., X. L. Bao, and M. J. Ammann, "Dual-band omnidirectional circularly polarized antenna," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 1, 77-83, Jan. 2013.
    doi:10.1109/TAP.2012.2214992

    11. Fikioris, G. and C. Valagiannopoulos, "Input admittances arising from explicit solutions to integral equations for infinite-length dipole antennas," Progress In Electromagnetics Research, Vol. 55, 285-306, 2005.
    doi:10.2528/PIER05031701

    12. Chen, L., X. Ren, Y.-Z. Yin, and Z. Wang, "Broadband CPW-fed circularly polarized antenna with an irregular slot for 2.45 GHz RFID reader," Progress In Electromagnetics Research Letters, Vol. 41, 77-86, 2013.
    doi:10.2528/PIERL13052020

    13. Valagiannopoulos, C., "An overview of the Watson transformation presented through a simple example," Progress In Electromagnetics Research, Vol. 75, 137-152, 2007.
    doi:10.2528/PIER07052502

    14. Sayidmarie, K. and L. Yahya, "Modeling of dual-band crescent-shape monopole antenna for WLAN applications," International Journal of Electromagnetics and Applications, Vol. 4, 31-39, 2014.

    15. Franchina, A. M., P. Nepa, R. Parolari, I. Moro, A. Polo Filisan, and D. Zamberlan, "A 3D LTE antenna for vehicular applications," IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 637-638, San Diego, CA, Jul. 2017.

    16. Hasturkoglu, S. and S. Lindenmeier, "A wideband automotive antenna for actual and future mobile communication 5G/LTE/WLAN with low profile," 11th European Conference on Antennas and Propagation (EUCAP), 602-605, Paris, Mar. 2017.

    17. Ghafari, E. and D. N. Aloi, "Top-loaded UWB monopole antenna for automotive applications," Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation, 1-2, Chicago, IL, Jul. 2012.

    18. Michel, A., P. Nepa, M. Gallo, I. Moro, A. Polo Filisan, and D. Zamberlan, "Printed wideband antenna for LTE-band automotive applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1245-1248, Nov. 2016.

    19. Navarro-Mendez, D. V., et al., "Compact wideband vivaldi monopole for LTE mobile communications," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1068-1071, 2015.
    doi:10.1109/LAWP.2015.2389956

    20. Goncharova, I. and S. Lindenmeier, "A high efficient automotive roof-antenna concept for LTE, DAB-L, GNSS and SDARS with low mutual coupling," 2013 9th European Conference on Antennas and Propagation (EuCAP), 1-5, Lisbon, Apr. 2015.

    21. Hua, Y., L. Huang, and Y. Lu, "A compact 3-port multiband antenna for V2X communication," 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 639-640, San Diego, CA, 2017.

    22. Suh, S.-Y., W. L. Stutzman, and W. A. Davis, "A new ultrawideband printed monopole antenna: the Planar Inverted Cone Antenna (PICA)," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 5, 1361-1364, May 2004.
    doi:10.1109/TAP.2004.827529

    23. Liang, X., S. Zhong, W. Wang, and F. Yao, "Printed annular monopole antenna for ultra-wideband applications," Electronics Letters, Vol. 42, No. 2, 71-72, Jan. 19, 2006.
    doi:10.1049/el:20063850