Vol. 111

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2021-03-22

A Duo of Graphene-Copper Based Wideband Planar Plasmonic Antenna Analysis for Lower Region of Terahertz (THz ) Communications

By Muhammad Irfan Khattak, Muhammad Anab, and Nabeel Muqarrab
Progress In Electromagnetics Research C, Vol. 111, 83-96, 2021
doi:10.2528/PIERC21010603

Abstract

In this article, a novel idea of designing a graphene based planar plasmonic patch antenna for terahertz wireless applications with detailed analysis is proposed. Based on the Surface Plasmon Polariton Waves (SPP) behaviour in graphene, a novel wideband planar graphene-based patch antenna is investigated here. As graphene with its wondered properties supports SPP in much lower infrared frequencies unlike the noble metals such as gold and Nickle which support SPP at much higher frequencies, the proposed planar antenna works on THz gap (0.1-10 THz) by covering a range of frequencies from 0.1 THz and goes beyond 10 THz, thus covering the whole THz gap. The proposed antenna is a simple planar structure with overall size of 31.8 x 6.4 μm2 having a Silicon with a relative permittivity (εr) of 11.9 used as a substrate material, and simple plane wave is used for excitation. Furthermore, radiating material comprises single layer graphene and copper with a partial ground of copper material, and for comparison purpose, only graphene layer as a radiating material is also analysed. Single layer graphene conductivity having chemical potential of 0.4 ev, relaxation time of 0.6 ρs, and a temperature of 298 K is discussed. Parametric analysis for getting optimum results is also studied. The unity peak absorption of above 98% is observed throughout the resonating frequency range. The proposed design is numerically simulated in CST MWS v2020, and other parameters results, such as unity peak absorption and surface current, are also discussed.

Citation


Muhammad Irfan Khattak, Muhammad Anab, and Nabeel Muqarrab, "A Duo of Graphene-Copper Based Wideband Planar Plasmonic Antenna Analysis for Lower Region of Terahertz (THz ) Communications," Progress In Electromagnetics Research C, Vol. 111, 83-96, 2021.
doi:10.2528/PIERC21010603
http://jpier.org/PIERC/pier.php?paper=21010603

References


    1. Koenig, S., D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, and T. Zwick, "Wireless sub-THz communication system with high data rate," Nature Photonics, Vol. 7, No. 12, 977-981, 2013.
    doi:10.1038/nphoton.2013.275

    2. Liu, D., U. Pfeiffer, J. Grzyb, and B. Gaucher, Advanced Millimeter-wave Technologies: Antennas, Packaging and Circuits, John Wiley & Sons, 2009.
    doi:10.1002/9780470742969

    3. Grischkowsky, D., S. Keiding, M. van Exter, and C. Fattinger, "Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors," JOSA B, Vol. 7, No. 10, 2006-2015, 1990.
    doi:10.1364/JOSAB.7.002006

    4. Kazemi, A. H. and A. Mokhtari, "Graphene-based patch antenna tunable in the three atmospheric windows," Optik, Vol. 142, 475-482, 2017.
    doi:10.1016/j.ijleo.2017.05.113

    5. Sadeghzadeh, R. A. and F. B. Zarrabi, "Metamaterial Fabry-Perot cavity implementation for gain and bandwidth enhancement of THz dipole antenna," Optik, Vol. 127, No. 13, 5181-5185, 2016.
    doi:10.1016/j.ijleo.2016.02.072

    6. Li, B., Y. Long, H. Liu, and C. Zhao, "Research progress on Terahertz technology and its application in agriculture," Transactions of the Chinese Society of Agricultural Engineering, Vol. 34, No. 2, 1-9, 2018.

    7. Deb, S., A. Ganguly, P. P. Pande, B. Belzer, and D. Heo, "Wireless NoC as interconnection backbone for multicore chips: Promises and challenges," IEEE Journal on Emerging and Selected Topics in Circuits and Systems, Vol. 2, No. 2, 228-239, 2012.
    doi:10.1109/JETCAS.2012.2193835

    8. Nishizawa, J. I., T. Sasaki, K. Suto, T. Yamada, T. Tanabe, T. Tanno, T. Sawai, and Y. Miura, "THz imaging of nucleobases and cancerous tissue using a GaP THz-wave generator," Optics Communications, Vol. 244, No. 1–6, 469-474, 2005.
    doi:10.1016/j.optcom.2004.09.064

    9. Naftaly, M., A. P. Foulds, R. E. Miles, and A. G. Davies, "Terahertz transmission spectroscopy of nonpolar materials and relationship with composition and properties," International Journal of Infrared and Millimeter Waves, Vol. 26, No. 1, 55-64, 2005.
    doi:10.1007/s10762-004-2033-6

    10. Sirisha, M. and M. Arun, "Dual-band reconfigurable graphene-based patch antenna in terahertz band for wireless network-on-chip applications," IET Micr., A. & Prop., Vol. 11, 2104-2108, 2017.

    11. Seyedsharbaty, M. M. and R. A. Sadeghzadeh, "Antenna gain enhancement by using metamaterial radome at THz band with reconfigurable characteristics based on graphene load," Optical and Quantum Electronics, Vol. 49, No. 6, 221, 2017.
    doi:10.1007/s11082-017-1052-1

    12. McIntosh, A. I., B. Yang, S. M. Goldup, M. Watkinson, and R. S. Donnan, "Terahertz spectroscopy: A powerful new tool for the chemical sciences," Chemical Society Reviews, Vol. 41, No. 6, 2072-2082, 2012.
    doi:10.1039/C1CS15277G

    13. Chernomyrdin, N. V., M. E. Frolov, S. P. Lebedev, I. V. Reshetov, I. E. Spektor, V. L. Tolstoguzov, V. E. Karasik, A. M. Khorokhorov, K. I. Koshelev, A. O. Schadko, and S. O. Yurchenko, "Wide-aperture aspherical lens for high-resolution terahertz imaging," Review of Scientific Instruments, Vol. 88, No. 1, 014703, 2017.
    doi:10.1063/1.4973764

    14. Dhillon, S. S., M. S. Vitiello, E. H. Linfield, A. G. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. P. Williams, and E. Castro-Camus, "The 2017 terahertz science and technology roadmap," Journal of Physics D: Applied Physics, Vol. 50, No. 4, 043001, 2017.
    doi:10.1088/1361-6463/50/4/043001

    15. Kleine-Ostmann, T. and T. Nagatsuma, "A review on terahertz communications research," Journal of Infrared, Millimeter, and Terahertz Waves, Vol. 32, No. 2, 143-171, 2011.
    doi:10.1007/s10762-010-9758-1

    16. Pourahmadazar, J. and T. A. Denidni, "Millimeter-wave planar antenna on flexible polyethylene terephthalate substrate with water base silver nanoparticles conductive ink," Microwave and Optical Technology Letters, Vol. 60, No. 4, 887-891, 2018.
    doi:10.1002/mop.31079

    17. Chen, H. T., W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature, Vol. 444, No. 7119, 597-600, 2006.
    doi:10.1038/nature05343

    18. Novoselov, K. S., A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric field effect in atomically thin carbon films," Science, Vol. 306, No. 5696, 666-669, 2004.
    doi:10.1126/science.1102896

    19. Wang, X., L. Zhi, and K. Mullen, "Transparent, conductive graphene electrodes for dye-sensitized solar cells," Nano Letters, Vol. 8, No. 1, 323-327, 2008.
    doi:10.1021/nl072838r

    20. Geim, A. K. and K. S. Novoselov, "The rise of graphene," Nature Materials, Vol. 6, 183-191, 2007.
    doi:10.1038/nmat1849

    21. Vakil, A. and N. Engheta, "Transformation optics using graphene," Science, Vol. 332, No. 6035, 1291-1294, 2011.
    doi:10.1126/science.1202691

    22. Jablan, M., H. Buljan, and M. Soljacic, "Plasmonics in graphene at infrared frequencies," Physical Review B, Vol. 80, No. 24, 245435, 2009.
    doi:10.1103/PhysRevB.80.245435

    23. Stankovich, S., D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, "Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide," Carbon, Vol. 45, No. 7, 1558-1565, 2007.
    doi:10.1016/j.carbon.2007.02.034

    24. Tung, V. C., M. J. Allen, Y. Yang, and R. B. Kaner, "High-throughput solution processing of large-scale graphene," Nature Nanotechnology, Vol. 4, No. 1, 25, 2009.
    doi:10.1038/nnano.2008.329

    25. Emtsev, K. V., A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Rohrl, and E. Rotenberg, "Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide," Nature Materials, Vol. 8, No. 3, 203-207, 2009.
    doi:10.1038/nmat2382

    26. Berger, C., Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. De Heer, "Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics," The Journal of Physical Chemistry B, Vol. 108, No. 52, 19912-19916, 2004.
    doi:10.1021/jp040650f

    27. Novoselov, K. S., A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric field effect in atomically thin carbon films," Science, Vol. 306, No. 5696, 666-669, 2004.
    doi:10.1126/science.1102896

    28. Kim, K. S., Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, "Large-scale pattern growth of graphene films for stretchable transparent electrodes," Nature, Vol. 457, No. 7230, 706-710, 2009.
    doi:10.1038/nature07719

    29. Obraztsov, A. N., E. A. Obraztsova, A. V. Tyurnina, and A. A. Zolotukhin, "Chemical vapor deposition of thin graphite films of nanometer thickness," Carbon, Vol. 45, No. 10, 2017-2021, 2007.
    doi:10.1016/j.carbon.2007.05.028

    30. Reina, A., X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, "Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition," Nano Letters, Vol. 9, No. 1, 30-35, 2009.
    doi:10.1021/nl801827v

    31. Chae, S. J., F. Gunes, K. K. Kim, E. S. Kim, G. H. Han, S. M. Kim, H. J. Shin, S. M. Yoon, J. Y. Choi, M. H. Park, and C. W. Yang, "Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: Wrinkle formation," Advanced Materials, Vol. 21, No. 22, 2328-2333, 2009.
    doi:10.1002/adma.200803016

    32. Li, X., W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, and S. K. Banerjee, "Large-area synthesis of high-quality and uniform graphene films on copper foils," Science, Vol. 324, No. 5932, 1312-1314, 2009.
    doi:10.1126/science.1171245

    33. Reina, A., S. Thiele, X. Jia, S. Bhaviripudi, M. S. Dresselhaus, J. A. Schaefer, and J. Kong, "Growth of large-area single- and bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces," Nano Research, Vol. 2, No. 6, 509-516, 2009.
    doi:10.1007/s12274-009-9059-y

    34. De Parga, A. V., F. Calleja, B. M. C. G. Borca, M. C. G. Passeggi, Jr., J. J. Hinarejos, F. Guinea, and R. Miranda, "Periodically rippled graphene: Growth and spatially resolved electronic structure," Physical Review Letters, Vol. 100, No. 5, 056807, 2008.
    doi:10.1103/PhysRevLett.100.056807

    35. Abadal, S., E. Alarcon, A. Cabellos-Aparicio, M. C. Lemme, and M. Nemirovsky, "Graphene-enabled wireless communication for massive multicore architectures," IEEE Communications Magazine, Vol. 51, No. 11, 137-143, 2013.
    doi:10.1109/MCOM.2013.6658665

    36. Akyildiz, I. F., J. M. Jornet, and C. Han, "TeraNets: Ultra-broadband communication networks in the terahertz band," IEEE Wireless Communications, Vol. 21, No. 4, 130-135, 2014.
    doi:10.1109/MWC.2014.6882305

    37. Hanson, G. W., "Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene," Journal of Applied Physics, Vol. 103, No. 6, 064302, 2008.
    doi:10.1063/1.2891452

    38. Hosseininejad, S. E., N. Komjani, and M. T. Noghani, "A comparison of graphene and noble metals as conductors for plasmonic one-dimensional waveguides," IEEE Transactions on Nanotechnology, Vol. 14, No. 5, 829-836, 2015.
    doi:10.1109/TNANO.2015.2449903

    39. Dragoman, M., A. A. Muller, D. Dragoman, F. Coccetti, and A. R. Plana, "Terahertz antenna based on graphene," Journal of Applied Physics, Vol. 107, No. 10, 104313, 2010.
    doi:10.1063/1.3427536

    40. Vakil, A. and N. Engheta, "Transformation optics using graphene," Science, Vol. 332, No. 6035, 1291-1294, 2011.
    doi:10.1126/science.1202691

    41. Jablan, M., H. Buljan, and M. Soljacic, "Plasmonics in graphene at infrared frequencies," Physical Review B, Vol. 80, No. 24, 245435, 2009.
    doi:10.1103/PhysRevB.80.245435

    42. Llatser, I., C. Kremers, A. Cabellos-Aparicio, J. M. Jornet, E. Alarcon, and D. N. Chigrin, "Graphene-based nano-patch antenna for terahertz radiation," Photonics and Nanostructures — Fundamentals and Applications, Vol. 10, No. 4, 353-358, 2012.
    doi:10.1016/j.photonics.2012.05.011

    43. Tamagnone, M., J. S. Gomez-Diaz, J. R. Mosig, and J. Perruisseau-Carrier, "Reconfigurable terahertz plasmonic antenna concept using a graphene stack," Applied Physics Letters, Vol. 101, No. 21, 214102, 2012.
    doi:10.1063/1.4767338

    44. Wang, X. C., W. S. Zhao, J. Hu, and W. Y. Yin, "Reconfigurable terahertz leaky-wave antenna using graphene-based high-impedance surface," IEEE Transactions on Nanotechnology, Vol. 14, No. 1, 62-69, 2014.
    doi:10.1109/TNANO.2014.2365205

    45. Llatser, I., C. Kremers, and D. N. Chigrin, "Radiation characteristics of tunable graphenes in the terahertz band," 6th European Conference on Antennas and Propagation (EUCAP), 194-198, 2011.

    46. Amanatiadis, S. A. and N. V. Kantartzis, "Design and analysis of a gate-tunable graphene-based nanoantenna," 2013 7th European Conference on Antennas and Propagation (EuCAP), 4038-4041, 2013.

    47. Thampy, A. S., M. S. Darak, and S. K. Dhamodharan, "Analysis of graphene based optically transparent patch antenna for terahertz communications," Physica E: Low-dimensional Systems and Nanostructures, Vol. 66, 67-73, 2015.
    doi:10.1016/j.physe.2014.09.023

    48. Zhang, X., G. Auton, E. Hill, and Z. Hu, "Graphene THz ultra wideband CPW-fed monopole antenna," 1st IET Colloquium on Antennas, Wireless and Electromagnetics, 1-16, IET, 2013.

    49. Kempa, K., J. Rybczynski, Z. Huang, K. Gregorczyk, A. Vidan, B. Kimball, J. Carlson, G. Benham, Y. Wang, A. Herczynski, and Z. F. Ren, "Carbon nanotubes as optical antennae," Advanced Materials, Vol. 19, No. 3, 421-426, 2007.
    doi:10.1002/adma.200601187

    50. Hanson, G. W., "Fundamental transmitting properties of carbon nanotube antennas," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 11, 3426-3435, 2005.
    doi:10.1109/TAP.2005.858865

    51. Llatser Martı, I., C. Kremers, D. N. Chigrin, J. M. Jornet Montana, M. C. Lemme, A. Cabellos Aparicio, and E. J. Alarcon Cot, "Radiation characteristics of tunable graphennas in the terahertz band," Radioengineering, Vol. 21, No. 4, 1-8, 2012.

    52. Rouhi, N., S. Capdevila, D. Jain, K. Zand, Y. Y. Wang, E. Brown, L. Jofre, and P. Burke, "Terahertz graphene optics," Nano Research, Vol. 5, No. 10, 667-678, 2012.
    doi:10.1007/s12274-012-0251-0

    53. Hanson, G. W., "Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene," Journal of Applied Physics, Vol. 103, No. 6, 064302, 2008.
    doi:10.1063/1.2891452

    54. Cao, Y. S., L. J. Jiang, and A. E. Ruehli, "An equivalent circuit model for graphene-based terahertz antenna using the PEEC method," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 4, 1385-1393, 2016.
    doi:10.1109/TAP.2016.2521881

    55. Han, M. Y., B. Ozyilmaz, Y. Zhang, and P. Kim, "Energy band-gap engineering of graphene nanoribbons," Physical Review Letters, Vol. 98, No. 20, 206805, 2007.
    doi:10.1103/PhysRevLett.98.206805

    56. Dubinov, A. A., V. Y. Aleshkin, V. Mitin, T. Otsuji, and V. Ryzhii, "Terahertz surface plasmons in optically pumped graphene structures," Journal of Physics: Condensed Matter, Vol. 2, No. 14, 145302, 2011.
    doi:10.1088/0953-8984/23/14/145302

    57. Jadidi, M. M., A. B. Sushkov, R. L. Myers-Ward, A. K. Boyd, K. M. Daniels, D. K. Gaskill, M. S. Fuhrer, H. D. Drew, and T. E. Mu, "Tunable terahertz hybrid metal-graphene plasmons," Nano Letters, Vol. 15, No. 10, 7099-7104, 2015.
    doi:10.1021/acs.nanolett.5b03191