Vol. 110

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2021-03-07

Simulation Study of a High-Order Mode BWO with Multiple Inclined Rectangular Electron Beams

By Fengzhen Zhang, Weilong Wang, Zhaochuan Zhang, and Dongping Gao
Progress In Electromagnetics Research C, Vol. 110, 213-227, 2021
doi:10.2528/PIERC21010401

Abstract

A backward wave oscillator (BWO) operating at the high-order mode (HOM) with multiple inclined rectangular electron beams (IRBs) is presented in this article. The BWO operating at the HOM with multiple IRBs (HOM IRB BWO) is driven by multiple IRBs. Compared with typical BWOs, the slow wave structure of the HOM IRB BWO is an overmoded metal-grating rectangular waveguide (OGRWG). The mode competition of the slow-wave device operating at the HOM is analyzed according to the ohmic losses of different modes of the OGRWG slow wave structure and multiple beams exciting. The analysis is verified by simulation. Two kinds of HOM-fundamental mode converters (MCs) are designed for converting the HOM generated by the HOM IRB BWO into the fundamental mode. The beam-wave interaction of the HOM IRB BWOs with the HOM-fundamental MC is studied. The results show that the mode competition does not occur; frequency spectrums of output signals are pure; the HOM is converted into the fundamental mode effectively.

Citation


Fengzhen Zhang, Weilong Wang, Zhaochuan Zhang, and Dongping Gao, "Simulation Study of a High-Order Mode BWO with Multiple Inclined Rectangular Electron Beams," Progress In Electromagnetics Research C, Vol. 110, 213-227, 2021.
doi:10.2528/PIERC21010401
http://jpier.org/PIERC/pier.php?paper=21010401

References


    1. Alexander, N. E., et al., "TeraSCREEN: Multi-frequency multi-mode Terahertz screening for border checks," Passive and Active Millimeter-Wave Imaging XVII, Vol. 9078, 907802, International Society for Optics and Photonics, 2014.

    2. Hirata, A., et al., "120-GHz-band millimeter-wave photonic wireless link for 10-Gb/s data transmission," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 5, 1937-1944, 2006.
    doi:10.1109/TMTT.2006.872798

    3. Joyce, H. J., et al., "Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy," Nanotechnology, Vol. 24, No. 21, 214006, 2013.
    doi:10.1088/0957-4484/24/21/214006

    4. Yang, X., et al., "Biomedical applications of terahertz spectroscopy and imaging," Trends in Biotechnology, Vol. 34, No. 10, 810-824, 2016.
    doi:10.1016/j.tibtech.2016.04.008

    5. Xie, W., et al., "Three dimensional nonlinear analysis of a single-grating rectangular waveguide Cerenkov maser," Physics of Plasmas, Vol. 22, No. 4, 042307, 2015.
    doi:10.1063/1.4918338

    6. Mineo, M. and C. Paoloni, "Comparison of THz backward wave oscillators based on corrugated waveguides," Progress In Electromagnetics Research, Vol. 30, 163-171, 2012.
    doi:10.2528/PIERL12013107

    7. He, T., et al., "Study on silicon-based conformal microstrip angular log-periodic meander line traveling wave tube," Progress In Electromagnetics Research, Vol. 75, 29-37, 2018.
    doi:10.2528/PIERM18090703

    8. Lu, F., et al., "3-D nonlinear theory for sheet-beam folded-waveguide traveling-wave tubes," IEEE Transactions on Electron Devices, Vol. 65, No. 11, 5103-5110, 2018.
    doi:10.1109/TED.2018.2871848

    9. Zhang, Z., et al., "S-band Klystron with 300 MHz bandwidth at 850 kW peak power and 20 kW average power," Progress In Electromagnetics Research, Vol. 103, 177-186, 2020.
    doi:10.2528/PIERC20032701

    10. Glyavin, M. Y., et al., "A 670 GHz gyrotron with record power and efficiency," Applied Physics Letters, Vol. 101, No. 15, 153503, 2012.
    doi:10.1063/1.4757290

    11. Zhang, X., R. Zhang, and Y. Wang, "Research on a high-order mode multibeam extended-interaction oscillator with coaxial structure," IEEE Transactions on Plasma Science, Vol. 48, No. 6, 1902-1909, 2020.
    doi:10.1109/TPS.2020.2987042

    12. Levin, C. Y., et al., "The clinotron," 1992 22nd European Microwave Conference, Vol. 1, 603-607, IEEE, 1992.
    doi:10.1109/EUMA.1992.335771

    13. Schunemann, K. and D. M. Vavriv, "Theory of the clinotron: A grating backward-wave oscillator with inclined electron beam," IEEE Transactions on Electron Devices, Vol. 46, No. 11, 2245-2252, 1999.
    doi:10.1109/16.796302

    14. Vavriv, D. M., "Potential of the Clinotron for THz-generation," AIP Conference Proceedings, Vol. 807, No. 1, 367-372, American Institute of Physics, 2006.

    15. Andrushkevich, V. S., Y. G. Gamayunov, and E. V. Patrusheva, "A nonlinear clinotron theory," Journal of Communications Technology and Electronics, Vol. 55, No. 3, 330-336, 2010.
    doi:10.1134/S1064226910030125

    16. Sattorov, M., et al., "Improved efficiency of backward-wave oscillator with an inclined electron beam," IEEE Transactions on Electron Devices, Vol. 60, No. 1, 458-463, 2012.
    doi:10.1109/TED.2012.2225837

    17. Xi, H., et al., "A continuous-wave clinotron at 0.26 THz with sheet electron beam," Physics of Plasmas, Vol. 24, No. 3, 033105, 2017.
    doi:10.1063/1.4977809

    18. Ponomarenko, S. S., et al., "400-GHz continuous-wave clinotron oscillator," IEEE Transactions on Plasma Science, Vol. 41, No. 1, 82-86, 2012.
    doi:10.1109/TPS.2012.2226247

    19. Gong, Y., et al., "A 140-GHz two-beam overmoded folded-waveguide traveling-wave tube," IEEE Transactions on Plasma Science, Vol. 39, No. 3, 847-851, 2011.
    doi:10.1109/TPS.2010.2100410

    20. Gee, A. and Y. M. Shin, "Gain analysis of higher-order-mode amplification in a dielectric-implanted multi-beam traveling wave structure," Physics of Plasmas, Vol. 20, No. 7, 073106, 2013.
    doi:10.1063/1.4813800

    21. Hu, Y. and J. Feng, "Research of kilowatts W-band overmoded TWT," 2015 8th UK, Europe, China Millimeter Waves and THz Technology Workshop (UCMMT), 1-3, IEEE, 2015.

    22. Shi, N., et al., "Study of 220GHz dual-beam overmoded photonic crystal-loaded folded waveguide TWT," IEEE Transactions on Plasma Science, Vol. 47, No. 6, 2971-2978, 2019.
    doi:10.1109/TPS.2019.2914164

    23. Shu, G. X., G. Liu, and Z. F. Qian, "Simulation study of a high-order mode terahertz radiation source based on an orthogonal grating waveguide and multiple sheet electron beams," Optics Express, Vol. 26, No. 7, 8040-8048, 2018.
    doi:10.1364/OE.26.008040

    24. Shu, G., et al., "Terahertz backward wave radiation from the interaction of high-order mode and double sheet electron beams," Journal of Physics D: Applied Physics, Vol. 51, No. 5, 055107, 2018.
    doi:10.1088/1361-6463/aaa20e

    25. Zhang, F., et al., "A 3-D frequency-domain nonlinear theory of the BWO with an inclined rectangular electron beam," IEEE Transactions on Plasma Science, Vol. 48, No. 9, 3040-3046, 2020.
    doi:10.1109/TPS.2020.3013650

    26. Xi, H., et al., "Continuous-wave Y-band planar BWO with wide tunable bandwidth," Scientific Reports, Vol. 8, No. 1, 1-7, 2018.

    27. Chang, C., et al., "Compact four-way microwave power combiner for high power applications," Journal of Applied Physics, Vol. 115, No. 21, 214502, 2014.
    doi:10.1063/1.4880741

    28. Chang, C., X. Zhu, G. Liu, J. Fang, R. Xiao, C. Chen, H. Shao, J. Li, H. Huang, Q. Zhang, and Z.-Q. Zhang, "Design and experiments of the GW high-power microwave feed horn," Progress In Electromagnetics Research, Vol. 101, 157-171, 2010.
    doi:10.2528/PIER10010202

    29. Kirilenko, A. A., L. A. Rud, and V. I. Tkachenko, "Nonsymmetrical H-plane corners for TE10-TEq0 mode conversion in rectangular waveguides," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 6, 2471-2477, 2006.
    doi:10.1109/TMTT.2006.875798

    30. Liu, G., et al., "Design and microwave measurement of a novel compact TE0n-TE1n' mode converter," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 12, 4108-4116, 2016.
    doi:10.1109/TMTT.2016.2608770

    31. Shu, G., et al., "Wideband rectangular TE10 to TE0n mode converters for terahertz-band high-order overmoded planar slow-wave structures," IEEE Transactions on Electron Devices, Vol. 67, No. 3, 1259-1265, 2020.
    doi:10.1109/TED.2020.2968167

    32. Shu, G., Z. Qian, and W. He, "Design and measurement of an H-band rectangular TE10 to TE20 mode converter," IEEE Access, Vol. 8, 37242-37249, 2020.
    doi:10.1109/ACCESS.2020.2974819

    33. Zhang, Q., C. W. Yuan, and L. Liu, "Theoretical design and analysis for TE20-TE10 rectangular waveguide mode converters," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 4, 1018-1026, 2012.
    doi:10.1109/TMTT.2011.2182206

    34. Pozar, D. M., Microwave Engineering, 256-261, John Wiley & Sons, 2011.