Vol. 110
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-03-08
Antenna Using a Magnetic-Slab Located in the Principal Magnetic-Field Region Beneath the Patch
By
Progress In Electromagnetics Research C, Vol. 110, 229-241, 2021
Abstract
This paper presents an analysis of microstrip patch antennas with different dielectric/magnetic substrate profiles in an attempt to obtain operating frequency reduction. Initially, different ridge shapes in the substrate were examined. An in-depth investigation of the ridge shape and its dimensions on the antenna performance has been carried out. Subsequently an antenna with a magnetic-slab loaded in the prime magnetic-field region beneath the patch is proposed. The new magnetic loaded antenna design is aimed to reduce the resonant frequency of a conventional patch and reduce the profile of an earlier design with a substrate ridge. Various magnetic materials have been embedded within the original dielectric substrate of the patch antenna. Measured results validated the hypothesis that this frequency can be reduced by placing magnetic materials at the centre of the patch. The achieved gain is expected to be further enhanced by using forthcoming magnetic materials with improved performance.
Citation
Ignacio J. Garcia Zuazola, Ashwani Sharma, Misha Filip, and William G. Whittow, "Antenna Using a Magnetic-Slab Located in the Principal Magnetic-Field Region Beneath the Patch," Progress In Electromagnetics Research C, Vol. 110, 229-241, 2021.
doi:10.2528/PIERC21010303
References

1. Hansen, R. C., Electrically Small, Superdirective and Superconducting Antennas, Wiley, New Jersey, 2006.
doi:10.1002/0470041048

2. Perruisseau-Carrier, J., M. Tamagnone, J. S. Gomez-Diaz, and E. Carrasco, "Graphene antennas: Can integration and reconfigurability compensate for the loss?," Proceedings of the 43rd European Microwave Conference (EuMA), 369-372, Nurember.

3. Yang, G.-M., A. Shrabstein, X. Xing, O. Obi, S. Stoute, M. Liu, J. Lou, and N. X. Sun, "Miniaturized antennas and planar bandpass filters with self-biased NiCo-ferrite films," IEEE Transactions on Magnetics, Vol. 45, No. 10, 4191-4194, Nov. 2009.
doi:10.1109/TMAG.2009.2023996

4. Balanis, C. A., Antenna Theory: Analysis and Design, 4th Ed., Wiley, Mar. 2016.

5. Niamien, C., S. Collardey, A. Sharaiha, and K. Mahdjoubi, "Compact expressions for efficiency and bandwidth of patch antennas over lossy magneto-dielectric materials," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 63-66, 2011.
doi:10.1109/LAWP.2011.2107493

6. Whittow, W. G., "Microstrip patch antennas with 3-dimensional substrates," Antennas and Propagation Conference (LAPC), 1-5, Loughborough, Nov. 12–13, 2012.

7. Mattei, J.-L., E. Le Guen, and A. Chevalier, "Dense and half-dense NiZnCo ferrite ceramics: Their respective relevance for antenna downsizing, according to their dielectric and magnetic properties at microwave frequencies," Journal of Applied Physics, Vol. 117, 084904, 2015.
doi:10.1063/1.4913700

8. Jadhav, G. B., Investigations of properties of spinel ferrite compound doped with rare earth ionsquot, Ph.D. dissertation, Babasaheb Ambedkar Marathwada University, India, Dec. 5, 2013.

9. Farzami, F., K. Forooraghi, and M. Norooziarab, "Miniaturization of a microstrip antenna using a compact and thin magneto-dielectric substrate," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1540-1542, 2011.
doi:10.1109/LAWP.2011.2181968

10. Hwang, Y. S., K. H. Lee, Y. S. Jeon, and W. M. Sung, "The design of a near-field antenna with a ferrite sheet for UHF EPC applications," Journal of Electromagnetic Engineering and Science, Vol. 14, No. 3, 317-319, 2014.
doi:10.5515/JKIEES.2014.14.3.317

11. Medeiros Gama, A. and M. Cerqueira Rezende, "Complex permeability and permittivity variation of radar absorbing materials based on MnZn ferrite in microwave frequencies," Materials Research, Vol. 16, No. 5, Sao Carlos, Sept./Oct. 2013.

12. Zhang, Q., Z. Chen, Y. Gao, C. Parini, and Z. Ying, "Miniaturized antenna array with Co2Z hexaferrite substrate for massive MIMO," 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI), 1803-1804, Jul. 6–11, 2014.

13. Yang, G.-M., X. Xing, A. Daigle, O. Obi, M. Liu, L. Jing, S. Stoute, K. Naishadham, and N. X. Sun, "Planar annular ring antennas with multilayer self-biased NiCo-ferrite films loading," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 3, 648-655, Mar. 2010.
doi:10.1109/TAP.2009.2039295

14. Schaubert, D. H., D. M. Pozar, and A. Adrian, "Effect of microstrip antenna substrate thickness and permittivity: Comparison of theories with experiment," IEEE Transactions on Antennas and Propagation, Vol. 37, No. 6, 677-682, Jun. 1989.
doi:10.1109/8.29353

15. Poddar, D. R., J. S. Chatterjee, and S. R. Chowdhury, "On some broad-band microstrip resonators," IEEE Transactions on Antennas and Propagation, Vol. 31, No. 1, 193-194, Jan. 1983.
doi:10.1109/TAP.1983.1142999

16. Hansen, R. C. and M. Burke, "Antennas with magneto-dielectrics," Microw. Opt. Technol. Lett., Vol. 26, No. 2, 75-78, Jul. 2000.
doi:10.1002/1098-2760(20000720)26:2<75::AID-MOP3>3.0.CO;2-W

17. Patel, S. S., I. J. Garcia Zuazola, and W. G. Whittow, "Antenna with three dimensional 3D printed substrates," Microwave and Optical Technology Letters, Vol. 58, No. 4, 741-744, Apr. 2016.
doi:10.1002/mop.29663

18. Motevasselian, A. and W. G. Whittow, "Patch size reduction of rectangular microstrip antennas by means of a cuboid ridge," IET Microwaves, Antennas & Propagation, Vol. 9, No. 15, 1727-1732, Sep. 2015.
doi:10.1049/iet-map.2014.0559

19. Han, Y., J. Suh, M. Shin, and S. Han, "The effect of sintering conditions on the power loss characteristics of Mn-Zn ferrites for high frequency applications," Journal de Physique IV Colloque, Vol. 7, No. 1, C1-111-C1-112, 1997.

20. Xing, B. B., et al., "Mn-Zn ferrite TP4K material with low power loss at high temperature," Applied Mechanics and Materials, Vol. 320, 119-122, Trans Tech Publications, Ltd., May 2013.