Vol. 105

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2020-09-06

A Dual Circularly Reconfigurable Polarization Patch Antenna for Fifth Generation Mobile Communication Systems

By Nazih K. Mallat, Mahdi Nouri, Sajjad Abazari Aghdam, Muhammad Talha Zia, Bassam Harb, and Alireza Jafarieh
Progress In Electromagnetics Research C, Vol. 105, 73-84, 2020
doi:10.2528/PIERC20053002

Abstract

In this paper, a reconfigurable patch antenna with Circular Polarization (CP) diversity with theoretical discussion and verification is proposed for the fifth generation (5G) of mobile communication systems. The proposed antenna contains two PIN diodes, which are correctly placed on the ground plane to attain polarization diversity. By switching between two ON/OFF modes in the PIN diodes, the proposed antenna can support the RHCP mode or the LHCP mode. An antenna with the well-matched impedance bandwidths (S11 ≤ -10 dB) of 2.5 GHz (27~29.5 GHz) and 3 GHz (36~39 GHz) and the dual-band 3-dB axial ratios of 6% (27.3-29 GHz) and 8.4% (35-38.2 GHz) operates at both the RHCP and LHCP modes. The experimental result shows that the proposed antenna has a circular polarization bandwidth at the center frequencies of 28 and 38 GHz for both the RHCP and LHCP.

Citation


Nazih K. Mallat, Mahdi Nouri, Sajjad Abazari Aghdam, Muhammad Talha Zia, Bassam Harb, and Alireza Jafarieh, "A Dual Circularly Reconfigurable Polarization Patch Antenna for Fifth Generation Mobile Communication Systems," Progress In Electromagnetics Research C, Vol. 105, 73-84, 2020.
doi:10.2528/PIERC20053002
http://jpier.org/PIERC/pier.php?paper=20053002

References


    1. Akyildiz, F., et al., "5G roadmap: 10 key enabling technologies," Computer Networks, Vol. 106, 17-48, 2016.
    doi:10.1016/j.comnet.2016.06.010

    2. Haraz, O. M., "Broadband and 28/38-GHz dual-band printed monopole/elliptical slot ring antennas for the future 5G cellular communications," J. Infrared Milli Terahz Waves, Vol. 37, 308-317, 2016.
    doi:10.1007/s10762-016-0252-2

    3. Li, Q. C., et al., "5G network capacity: Key elements and technologies," IEEE Vehicular Technology Magazine, Vol. 9, No. 1, 71-78, 2014.
    doi:10.1109/MVT.2013.2295070

    4. El-Halwagy, W., et al., "Investigation of wideband substrate-integrated vertically-polarized electric dipole antenna and arrays for mmWave 5G mobile devices," IEEE Access, Vol. 6, 2145-2157, 2018.
    doi:10.1109/ACCESS.2017.2782083

    5. Rappaport, T. S., et al., "Millimeter wave mobile communications for 5G cellular: It will work!," IEEE Access, Vol. 1, 335-349, 2013.
    doi:10.1109/ACCESS.2013.2260813

    6. Wang, C. X., et al., "Cellular architecture and key technologies for 5G wireless communication networks," IEEE Communications Magazine, Vol. 52, No. 2, 122-130, 2014.
    doi:10.1109/MCOM.2014.6736752

    7. Register, F., "Use of spectrum bands above 24 GHz for mobile radio services," Federal Communications Commission, Vol. 81, No. 219, 2016.

    8. Nishamol, M. S., et al., "An electronically reconfigurable microstrip antenna with switchable slots for polarization diversity," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 9, 3424-3427, 2011.
    doi:10.1109/TAP.2011.2161446

    9. Yang, X.-X., et al., "A polarization reconfigurable patch antenna with loop slots on the ground plane," IEEE Transactions on Antennas and Propagation, Vol. 11, 69-72, 2012.

    10. Li, Y., et al., "Polarization reconfigurable slot antenna with a novel compact CPW-to-slotline transition for WLAN application," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 252-255, 2010.
    doi:10.1109/LAWP.2010.2046006

    11. Pyo, S., J. Baik, and Y. Kim, "Slot-perturbed microstrip antenna for switchable circular polarisation," Electronics Letters, Vol. 47, No. 10, 583-585, 2011.
    doi:10.1049/el.2011.0721

    12. Lawrence, N. P., et al., "5G terrestrial networks: Mobility and coverage-solution in three dimensions," IEEE Access, Vol. 5, 8064-8093, 2017.
    doi:10.1109/ACCESS.2017.2693375

    13. Wang, K. X. and H. Wong, "A circularly polarized antenna by using rotated-stair dielectric resonator," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 787-790, 2015.
    doi:10.1109/LAWP.2014.2385475

    14. Bisharat, D. J., S. Liao, and Q. Xue, "High gain and low cost differentially fed circularly polarized planar aperture antenna for broadband millimeter-wave applications," IEEE Transactions on Antennas and Propagation, Vol. 64, 33-42, 2016.
    doi:10.1109/TAP.2015.2499750

    15. Akbari, S. G. M., et al., "Analytic study on CP enhancement of millimeter wave DR and patch subarray antennas," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 27, No. 1, e21053, 2017.
    doi:10.1002/mmce.21053

    16. Park, S. J. and S. O. Park, "LHCP and RHCP substrate integrated waveguide antenna arrays for millimeter wave applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 601-604, 2017.
    doi:10.1109/LAWP.2016.2594081

    17. Asaadi, M. and A. Sebak, "High-gain low-profile circularly polarized slotted SIW cavity antenna for mmWave applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 752-755, 2017.
    doi:10.1109/LAWP.2016.2601900

    18. Guntupalli, A. B. and K. Wu, "Frequency-steered directive beam with dual circular polarization and two-dimensional scan capability for millimeter wave imaging and sensing systems," IEEE WAMICON, 1-3, 2014.

    19. Cheng, Y. J., W. Hong, and K. Wu, "Millimeter wave half mode substrate integrated waveguide frequency scanning antenna with quadri-polarization," IEEE Transactions on Antennas and Propagation, Vol. 58, 1848-1855, 2010.
    doi:10.1109/TAP.2010.2046844

    20. Haraz, O. M., "Millimeter-wave printed dipole array antenna loaded with a low-cost dielectric lens for high-gain applications," J. Infrared Milli Terahz Waves, Vol. 41, 225-244, 2020.
    doi:10.1007/s10762-019-00654-5

    21., https:cdn.macom.com/datasheets/MA4AGP907-MA4AGFCP910.pdf.

    22. Ansoft HFSS, Ver. 15, Ansoft Corporation, Pittsburgh, PA, 2015.

    23. Kanaujia, B. K., M. K. Khandelwal, S. Dwari, S. Kumar, and A. K. Gautam, "Analysis and design of compact high gain microstrip patch antenna with defected ground structure for wireless applications," Wireless Personal Communications, Vol. 91, No. 2, 661-678, 2016.
    doi:10.1007/s11277-016-3486-3

    24. Cheng, D. K., Field and Wave Electromagnetics, Pearson Education India, 1989.

    25. Syrytsin, I., et al., "User effects on the circular polarization of 5G mobile terminal antennas," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 9, 4906-4911, 2018.
    doi:10.1109/TAP.2018.2851383

    26. Abbas, E. A., A. T. Mobashsher, and A. Abbosh, "Polarization reconfigurable antenna for 5G cellular networks operating at millimeter waves," IEEE Asia Pacific Microwave Conference (APMC), 772-774, Kuala Lumpar, 2017.

    27. Wu, Q., et al., "Millimeter wave multi beam endfire dual-circularly polarized antenna array for 5G wireless applications," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 9, 4930-4935, 2018.
    doi:10.1109/TAP.2018.2851667

    28. Hussain, N., M. Jeong, J. Park, and N. Kim, "A broadband circularly polarized fabry-perot resonant antenna using a single-layered PRS for 5G MIMO applications," IEEE Access, Vol. 7, 42897-42907, 2019.
    doi:10.1109/ACCESS.2019.2908441

    29. Aboualalaa, M., et al., "Independent matching dual-band compact quarter-wave half-slot antenna for millimeter-wave applications," IEEE Access, Vol. 7, 130782-130790, 2019.
    doi:10.1109/ACCESS.2019.2940273

    30. Li, B., Y. Deng, J. Zhang, and Z. Zhou, "Novel method for measuring the axial ratio of circularly polarized antennas based on the cross-polarization," 2017 Sixth Asia-Pacific Conference on Antennas and Propagation (APCAP), 1-3, IEEE, 2017.

    31. Rodenbeck, C. T., K. Chang, and J. Aubin, "Automated pattern measurement for circularly-polarized antennas using the phase-amplitude method," Microwave Journal, Vol. 47, No. 7, 2004.