Vol. 104

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2020-08-07

A Study of an Inversion Model for Sea Ice Thickness Retrieval Using Simulated Annealing

By Yu Jen Lee, Kee Choon Yeong, and Hong-Tat Ewe
Progress In Electromagnetics Research C, Vol. 104, 143-155, 2020
doi:10.2528/PIERC20042001

Abstract

Previously, an inverse microwave scattering model based on radiative transfer was developed for the retrieval of sea ice thickness using radar backscatter data. The model, called the Radiative Transfer Inverse Scattering Model (RTISM), is a combination of the Radiative Transfer-Dense Medium Phase and Amplitude Correction Theory (RT-DMPACT) forward model and the Levenberg-Marquardt Algorithm (LMA). In this paper, the LMA in the RTISM is replaced with Simulated Annealing (SA) as the optimizer to allow a wider range of inversion capability. SA is a global optimizer, and its settings make it convenient to switch between different target parameters to be optimized for inversion. In this study, the model will first be tested using different data sets to verify its applicability. Next, the model is used to estimate the sea ice thickness around Ross Island, Antarctica using data from ground truth measurements together with satellite data from Radarsat-1 from the year 2006. In order to further validate the model, the data collected from measurements performed during an experiment to grow an ice sheet within a refrigerated facility at the U.S. Army Cold Regions Research and Engineering Laboratory (CRREL) are used to perform the retrieval of saline ice thickness. Preliminary results show that the new model performs as expected and shows potential. However, there are still limitations to the inverse model, and further improvements in the future need to be considered.

Citation


Yu Jen Lee, Kee Choon Yeong, and Hong-Tat Ewe, "A Study of an Inversion Model for Sea Ice Thickness Retrieval Using Simulated Annealing," Progress In Electromagnetics Research C, Vol. 104, 143-155, 2020.
doi:10.2528/PIERC20042001
http://jpier.org/PIERC/pier.php?paper=20042001

References


    1. Turner, J. and J. Overland, "Contrasting climate change in the two polar regions," Polar Research, Vol. 28, 146-164, 2009.
    doi:10.1111/j.1751-8369.2009.00128.x

    2. Rack, W. and H. Rott, "Further retreat of the northern Larsen Ice Shelf and collapse of Larsen B," FRISP Report, Vol. 14, 2002.

    3. Martin-Mikle, C. J. and D. B. Fagre, "Glacier recession since the Little Ice Age: Implications for water storages in a Rocky Mountain landscape," Arctic, Antarctic, and Alpine Research, Vol. 51, No. 1, 280-289, 2019.
    doi:10.1080/15230430.2019.1634443

    4. Stroeve, J. and D. Notz, "Changing state of Arctic sea ice across all seasons," Environmental Research Letters, Vol. 13, No. 10, 1-23, 2018.
    doi:10.1088/1748-9326/aade56

    5. Maykut, G. A., "Energy exchange over young sea ice in the central Arctic," Journal of Geophysical Research, Vol. 83, No. C7, 3646-3658, 1978.
    doi:10.1029/JC083iC07p03646

    6. Golden, K. M., M. Cheney, K. H. Ding, A. K. Fung, T. C. Grenfell, D. Isaacson, J. A. Kong, S. V. Nghiem, J. Sylvester, and D. P. Winebrenner, "Forward electromagnetic scattering models for sea ice," IEEE Transactions on Geoscience and Remote Sensing, Vol. 36, No. 5, 1655-1674, 1998.
    doi:10.1109/36.718637

    7. Golden, K. M., D. Borup, M. Cheney, E. Cherkaeva, M. S. Dawson, K. H. Ding, A. K. Fung, D. Isaacson, S. A. Johnson, A. K. Jordan, J. A. Kong, R. Kwok, S. V. Nghiem, R. G. Onstott, J. Sylvester, D. P. Winebrenner, and I. H. H. Zabel, "Inverse electromagnetic scattering models for sea ice," IEEE Transactions on Geoscience and Remote Sensing, Vol. 36, No. 5, 1675-1704, 1998.
    doi:10.1109/36.718638

    8. Lee, Y. J., W. K. Lim, and H.-T. Ewe, "A study of an inversion model for sea ice thickness retrieval in Ross Island, Antarctica," Progress In Electromagnetics Research, Vol. 111, 381-406, 2011.
    doi:10.2528/PIER10100411

    9. Shih, S. E., K. H. Ding, S. V. Nghiem, C. C. Hsu, J. A. Kong, and A. K. Jordan, "Thickness retrieval using time series electromagnetic measurements of laboratory grown saline ice," 1996 International Geoscience and Remote Sensing Symposium (IGARSS’96), Vol. 2: Remote Sensing for a Sustainable Future, 1208-1210, 1996.

    10. Shih, S. E., K. H. Ding, S. V. Nghiem, C. C. Hsu, J. A. Kong, and A. K. Jordan, "Saline ice thickness retrieval using time series c-band polarimetric radar measurements," IEEE Transactions on Geoscience and Remote Sensing, Vol. 36, No. 5, 1589-1598, 1998.
    doi:10.1109/36.718862

    11. Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, New York, 1986.

    12. Albert, M. D., T. E. Tan, H. T. Ewe, and H. T. Chuah, "A theoretical and measurement study of sea ice and ice shelf in Antarctica as electrically dense media," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 14, 1973-1981, 2005.
    doi:10.1163/156939305775570639

    13. Chuah, H. T., S. Tjuatja, A. K. Fung, and J. W. Bredow, "A phase matrix for a dense discrete random medium: Evaluation of volume scattering coefficient," IEEE Transactions on Geoscience and Remote Sensing, Vol. 34, No. 5, 1137-1143, 1996.
    doi:10.1109/36.536529

    14. Chandrasekhar, S., Radiative Transfer, Dover, New York, 1960.

    15. Ulaby, F. T., R. K. Moore, and A. K. Fung, Microwave Remote Sensing, Active and Passive: Vol. 1. Microwave Remote Sensing Fundamentals and Radiometry, Addison-Wesley Publishing Company, Massachusetts, 1981.

    16. Tsang, L., J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing, Wiley-Interscience, New York, 1985.

    17. Fung, A. K. and H. J. Eom, "A study of backscattering and emission from closely packed inhomogeneous media," IEEE Transactions on Geoscience and Remote Sensing, Vol. 23, No. 5, 761-767, 1985.
    doi:10.1109/TGRS.1985.289395

    18. Ewe, H. T. and H. T. Chuah, "An analysis of the scattering of discrete scatterers in an electrically dense medium," 1998 IEEE International Geoscience and Remote Sensing Symposium Proceedings (IGARSS’98), Vol. 5, 2378-2380, July 6–10, 1998.

    19. Fung, A. K., Microwave Scattering and Emission Models and Their Applications, Artech House, Norwood, 1994.

    20. Ulaby, F. T., R. K. Moore, and A. K. Fung, Microwave Remote Sensing, Active and Passive: Vol. 3, From Theory to Applications, Addison-Wesley Publishing Company, Massachusetts, 1986.

    21. Fung, A. K., Z. Li, and K. S. Chen, "Backscattering from a randomly rough dielectric surface," IEEE Transactions on Geoscience and Remote Sensing, Vol. 30, No. 2, 356-369, 1992.
    doi:10.1109/36.134085

    22. Ewe, H. T., H. T. Chuah, and A. K. Fung, "A backscatter model for a dense discrete medium: Analysis and numerical results," Remote Sensing of Environment, Vol. 65, No. 2, 195-203, 1998.
    doi:10.1016/S0034-4257(98)00027-3

    23. Goffe, W. L., G. D. Ferrier, and J. Rogers, "Global optimization of statistical functions with simulated annealing," Journal of Econometrics, Vol. 60, No. 1–2, 65-99, 1994.
    doi:10.1016/0304-4076(94)90038-8

    24. Corana, A., M. Marchesi, C. Martini, and S. Ridella, "Minimizing multimodal functions of continuous variables with the ‘simulated annealing algorithm," ACM Transactions on Mathematical Software, Vol. 13, No. 3, 262-280, 1987.
    doi:10.1145/29380.29864

    25. Nghiem, S. V., R. Kwok, S. H. Yueh, A. J. Gow, D. K. Perovich, J. A. Kong, and C. C. Hsu, "Evolution in polarimetric signatures of thin saline ice under constant growth," Radio Science, Vol. 32, No. 1, 127-151, 1997.
    doi:10.1029/96RS03051