Vol. 102
Latest Volume
All Volumes
PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-05-21
Pilot Contamination Mitigation Based on Interfering User's Angle of Arrival in Massive MIMO Systems
By
Progress In Electromagnetics Research C, Vol. 102, 93-107, 2020
Abstract
A new approach to mitigate pilot contamination in massive MIMO systems is proposed in this paper. We consider two cells from the first tier of copilot cells of a cellular network where the base stations (BSs) are equipped with uniform linear arrays with hybrid beamforming adopted. We consider one cell as the cell of interest containing a typical desired user, and the other cell contains an interfering user sending data and contaminating pilot signals to the BS of the cell of interest. We derive a closed-form expression for the desired user's achievable rate as a function of the interfering user's angle of arrival (AoA). We model the ray propagation from the interfering user to the BS of the cell of interest and its related AoA as Gaussian distribution. Based on the model, we derive closed-form expressions for the pilot contamination level in the cell of interest, and for the desired user's data path gain estimation error due to pilot contamination. A perfect agreement is found between theoretical and Monte Carlo simulation results which show that when the interfering user's AoA is increased the pilot contamination level is significantly minimized, the desired user's data path gain estimation error also minimized, and hence its data rate is significantly increased. Moreover, we show in our analysis that the interfering user's AoA can be effectively controlled and increased by reducing the copilot cells' radius.
Citation
Parfait Ifede Tebe, Guangjun Wen, and Kwadwo Ntiamoah-Sarpong, "Pilot Contamination Mitigation Based on Interfering User's Angle of Arrival in Massive MIMO Systems," Progress In Electromagnetics Research C, Vol. 102, 93-107, 2020.
doi:10.2528/PIERC20041501
References

1. Larson, E. G., O. Edfors, F. Tufvesson, and T. L. Marzetta, "Massive MIMO for next generation wireless systems," IEEE Commun. Mag., Vol. 52, No. 2, 186-195, Feb. 2014.
doi:10.1109/MCOM.2014.6736761

2. Rusek, F., D. Persson, B. K. Lau, E. G. Larsson, T. L. Marzetta, O. Edfors, and F. Tufvesson, "Scaling up MIMO: Opportunities and challenges with very large arrays," IEEE Sig. Proc. Mag., Vol. 30, No. 1, 40-60, Jan. 2013.
doi:10.1109/MSP.2011.2178495

3. Ngo, H. Q., E. G. Larsson, and T. L. Marzetta, "Energy and spectral efficiency of very large multiuser MIMO systems," IEEE Trans Commun., Vol. 61, No. 4, 1436-1449, Apr. 2013.
doi:10.1109/TCOMM.2013.020413.110848

4. Yao, R., T. Li, Y. Liu, X. Zuo, and H. Liu, "Analytical approximation of the channel rate for massive MIMO system with large but finite number of antennas," IEEE Access, Vol. 6, 6496-6504, Mar. 2018.
doi:10.1109/ACCESS.2017.2787668

5. Prasad, K. N. R. S. V., E. Hossain, and V. K. Bhargava, "Energy efficiency in massive MIMO-based 5G networks: opportunities and challenges," IEEE Wirel. Commun., Vol. 24, No. 3, 86-94, 2017.
doi:10.1109/MWC.2016.1500374WC

6. Chen, Z., F. Sohrabi, and W. Yu, "Multi-cell sparse activity detection for massive random access: massive MIMO versus cooperative MIMO," IEEE Trans. Commun., Vol. 18, No. 8, 4060-4074, Aug. 2019.

7. Wahhamy, A. A., N. E. Buris, H. Zhu, H. A. Rizzo, and S. Yahya, "An efficient paradigm for evaluating the channel capacity of closed-loop massive MIMO systems," Progress In Electromagnetics Research C, Vol. 98, 1-16, 2020.
doi:10.2528/PIERC19082806

8. Ge, X., K. Huang, C. X. Wang, X. Hong, and X. Yang, "Capacity analysis of a multi-cell multi-antenna cooperative cellular network with co-channel interference," IEEE Trans. Wireless Commun., Vol. 10, No. 10, 3298-3308, Oct. 2011.
doi:10.1109/TWC.2011.11.101551

9. Lakshminarayara, S., M. Assaad, and M. Debbah, "Coordinated multicell beamforming for massive MIMO: A random matrix approach," IEEE Trans. Info. Theory, Vol. 61, No. 6, 3387-3412, Jun. 2015.
doi:10.1109/TIT.2015.2421446

10. Khansefid, A. and H. Minn, "Achievable downlink rates of MRC and ZF precoders in massive MIMO with uplink and downlink pilot contamination," IEEE Trans. Commun., Vol. 63, No. 12, 4849-4864, Dec. 2015.
doi:10.1109/TCOMM.2015.2482965

11. Parida, P. and H. S. Dhillon, "Stochastic geometry-based uplink analysis of massive MIMO systems with fractional pilot reuse," IEEE Trans. Wireless Commun., Vol. 18, No. 3, 1651-1668, Mar. 2019.
doi:10.1109/TWC.2019.2895061

12. Liu, G., H. Deng, X. Qian, W. Wang, and G. Peng, "Joint pilot allocation and power control to enhance max-min spectral efficiency in TDD massive MIMO systems," IEEE Access, Vol. 7, 149191-149201, Oct. 2019.

13. Figueiredo, F. A. P. D., C. F. Dias, F. A. C. M. Cardoso, and G. Fraidenraich, "On the distribution of an effective channel estimator for multi-cell massive MIMO," IEEE Access, Vol. 7, 114508-114519, Aug. 2019.
doi:10.1109/ACCESS.2019.2935686

14. Akbar, N., S. Yan, A. M. Khattak, and N. Yang, "On the pilot contamination attack in multi-cell multiuser massive MIMO networks," IEEE Trans. Commun., Vol. 68, No. 4, 2264-2276, Apr. 2020.
doi:10.1109/TCOMM.2020.2967760

15. Elijah, O., C. H. Leow, T. A. Rahman, S. Nunoo, and S. Z. Iliya, "A comprehensive survey of pilot contamination in massive MIMO-5G system," IEEE Commun Surveys & Tutorials, Vol. 18, No. 2, 905-923, 2016 (Second Quarter).
doi:10.1109/COMST.2015.2504379

16. Yin, H., D. Gesbert, M. Filippou, and Y. Liu, "A coordinated approach to channel estimation in large-scale multiple-antenna systems," IEEE Journal on Selected Areas in Communications, Vol. 31, No. 2, 264-273, Feb. 2013.
doi:10.1109/JSAC.2013.130214

17. Yin, H., D. Gesbert, M. C. Filippou, and Y. Liu, "Decontaminating pilots in massive MIMO systems," Proc. of IEEE Int. Conf. Commun. (ICC), 3170-3175, Jun. 2013.

18. Muller, R., L. Cottatellucci, and M. Vehkapera, "Blind pilot decontamination," IEEE Journal on Selected Topics in Signal Processing, Vol. 8, No. 5, 773-786, Oct. 2014.
doi:10.1109/JSTSP.2014.2310053

19. Mazlan, M. H., M. Behjati, R. Nordin, and M. Ismail, "Wiener-based smoother and predictor for massive MIMO downlink system under pilot contamination," Telecommunication Systems, Vol. 67, No. 3, 387-399, Mar. 2018.
doi:10.1007/s11235-017-0341-0

20. Amiri, E., R. Mueller, W. Gerstacker, and , "Blind pilot decontamination in massive MIMO by independent component analysis," Proc. of IEEEE Global Communications Conference (GLOBECOM), 1-5, Dec. 2017.

21. Mazlan, M. H., E. Ali, A. M. Ramly, and R. Nordin, "Pilot decontamination using coordinated wiener predictor in massive-MIMO system," IEEE Access, Vol. 6, 73180-73190, Dec. 2018.
doi:10.1109/ACCESS.2018.2881743

22. Smaili, N., M. Djeddou, and A. Azrar, "Pilot contamination mitigation based on antenna subset transmission for mmWave massive MIMO," International Journal of Communication Systems, Vol. 31, No. 14, 1-12, Jul. 2018.

23. Ali, E., M. smail, R. Nordin, F. Abdulah, and M. H. Mazlan, "Performance analysis of inter-cell interference reduction using AOA-based beamforming in Mm wave massive MIMO systems," Proc. of IEEE 13th Malaysia International Conference on Communication (MICC), 235-240, Nov. 2017.

24. Tebe, P. I., Y. Kuang, A. E. Ampoma, and K. A. Opare, "Mitigating pilot contamination in massive MIMO using cell size reduction," IEICE Transactions on Communications, Vol. E101-B, No. 5, 1280-1290, May 2018.
doi:10.1587/transcom.2017EBP3189

25. Rappaport, T. S., "Wireless communications: principles and practice," Publishing House of Electronics Industry, 68-71, 2nd Edition, Prentice Hall, Beijing, China, 2004.

26. Zhu, G., K. Huang, V. K. N. Lau, B. Xia, X. Li, and S. Zhang, "Hybrid beamforming via the Kronecker decomposition for the millimeter-wave massive MIMO systems," IEEE Journal on Selected Areas in Communications, Vol. 35, No. 9, 2097-2114, Sep. 2017.
doi:10.1109/JSAC.2017.2720099

27. Maschietti, F., D. Gesbert, P. de Kerret, and H. Wymeersch, "Robust location-aided beam alignment in millimeter wave massive MIMO," Proc. of IEEE Global Communications Conference (GLOBECOM), 1-6, Dec. 2017.

28. Hashemi, M., A. Sabharwal, C. E. Koksal, and N. B. Shroff, "Efficient beam alignment in millimeter wave systems using contextual bandits," Proc. of IEEE Conference on Computer Communications (INFOCOM), 2393-2401, Apr. 2018.

29. Shafin, R., L. Liu, J. Zhang, and Y. C. Wu, "DoA estimation and capacity analysis for 3-D milimeter wave massive MIMO/FD-MIMO OFDM systems," IEEE Trans. Wireless Commun., Vol. 15, No. 10, 6963-6978, Oct. 2016.
doi:10.1109/TWC.2016.2594173

30. Cacciola, M., S. Calcagno, G. Megali, F. C. Morabito, D. Pellicano, and M. Versaci, "FEA design and misfit minimization for in-depth flaw characterization in metallic plates with Eddy current nondestructive testing," IEEE Trans. Magn., Vol. 45, No. 3, 1506-1509, Mar. 2009.
doi:10.1109/TMAG.2009.2012691

31. Versaci, M., "Fuzzy approach and Eddy current NDT/NDE devices in industrial applications," IEEE Electronics Letters, Vol. 52, No. 11, 943-945, May 2016.
doi:10.1049/el.2015.3409

32. Kazerouni, A., F. J. Lopez-Martinez, and A. Goldsmith, "Increasing capacity in massive MIMO networks via small cells," Proc. of IEEE Global Communications Conference (GLOBECOM) Workshop, 358-363, Dec. 2014.

33. Tan, W., X. Feng, G. Liu, W. Tan, M. Zhou, and C. Li, "Spectral efficiency of massive MIMO Systems with multiple sub-arrays antenna," IEEE Access, Vol. 6, 31213-31223, Jun. 2018.
doi:10.1109/ACCESS.2018.2845666

34. Marzetta, T. L., "Noncooperative cellular wireless with unlimited numbers of base station antennas," IEEE Trans. Wireless Commun., Vol. 9, No. 11, 3590-3600, Nov. 2010.
doi:10.1109/TWC.2010.092810.091092

35. Zetterberg, P., Mobile cellular communications with base station antenna arrays: Spectrum efficiency, algorithms and propagation Models, Ph.D. thesis, Royal Institute of Technology, Sweden, available online on December, 2008.

36. Calcagno, S., F. L. Foresta, and M. Versaci, "Independent component analysis and discrete wavelet transform for artifact removal in biomedical signal processing," American Journal of Applied Sciences, Vol. 11, No. 1, 57-68, 2014.
doi:10.3844/ajassp.2014.57.68

37. Yang, X. and A. O. Fapojuwo, "Performance analysis of hexagonal cellular networks in fading channels," Wireless Commun. Mob. Computing, Vol. 2016, No. 16, 850-867, Jan. 2015.

38. Chen, Y., X. Wen, and Z. Lu, "Achievable spectral efficiency of Hybrid beamforming massive MIMO systems with quantized phase shifters, channel non-reciprocity and estimation errors," IEEE Access, Vol. 8, 71304-71317, Apr. 2020.
doi:10.1109/ACCESS.2020.2987613