Vol. 98

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2019-12-31

Wideband Designs of Sectoral Microstrip Antennas Using Parasitic Arc Shape Patches

By Amit A. Deshmukh and Sanjay B. Deshmukh
Progress In Electromagnetics Research C, Vol. 98, 97-107, 2020
doi:10.2528/PIERC19110704

Abstract

Wide bandwidth and high gain designs of sectoral microstrip antennas gap-coupled with parasitic arc shape patches are proposed. In 1800 MHz frequency band, optimum response with bandwidth of more than 50% and peak gain of 10 dBi is obtained for 30° sectoral angle employing two gap-coupled arc shape patches. Further gap-coupled variations of slot cut single arc shape patch with 60° sectoral patch is presented. This design yields bandwidth of above 930 MHz (~53%) with peak gain of more than 10 dBi. The comparison for the proposed gap-coupled sectoral variations with reported antennas is presented. Proposed gap-coupled sectoral configurations are single layer and thus simple in design and yet offers bandwidth and gain of larger than 50% and 10 dBi, respectively.

Citation


Amit A. Deshmukh and Sanjay B. Deshmukh, "Wideband Designs of Sectoral Microstrip Antennas Using Parasitic Arc Shape Patches," Progress In Electromagnetics Research C, Vol. 98, 97-107, 2020.
doi:10.2528/PIERC19110704
http://jpier.org/PIERC/pier.php?paper=19110704

References


    1. Balanis, C. A., Antenna Theory & Design, 3rd Ed., John Wiley & Sons Inc. Publication, 2005.

    2. James, J. R. and P. S. Hall, Handbook of Microstrip Antennas Vol. I, London Peter Peregrinus, 1989.

    3. Kumar, G. and K. P. Ray, Broadband Microstrip Antennas, 1st Ed., Artech House, USA, 2003.

    4. Wong, K. L., Compact and Broadband Microstrip Antennas, 1st Ed., John Wiley & sons, Inc., New York, USA, 2002.
    doi:10.1002/0471221112

    5. Wu, C. K. and K. L. Wong, "Broadband microstrip antenna with directly coupled and parasitic patches," Microwave and Optical Technology Letters, Vol. 22, No. 5, 348-349, 1999.
    doi:10.1002/(SICI)1098-2760(19990905)22:5<348::AID-MOP16>3.0.CO;2-V

    6. Tiwari, R. N., P. Singh, and B. K. Kanaujia, "Butter fly shape compact microstrip antenna for wideband applications," Progress In Electromagnetics Research, Vol. 69, 45-50, 2017.
    doi:10.2528/PIERL17042703

    7. Lee, H. F. and W. Chen, Advances in Microstrip and Printed Antennas, John Wiley & Sons, New York, 1997.

    8. Chen, Y., S. Yang, and Z. Nie, "Bandwidth enhancement method for low profile E-shaped microstrip patch antennas," IEEE Transactions on Antennas & Propagation, Vol. 58, No. 7, 2442-2447, 2010.
    doi:10.1109/TAP.2010.2048850

    9. Deshmukh, A. A. and G. Kumar, "Compact broadband rectangular microstrip antennas," Microwave and Optical Technology Letters, Vol. 48, No. 6, 1043-1046, 2006.
    doi:10.1002/mop.21595

    10. Wadkar, S., B. Hogade, R. Chopra, and G. Kumar, "Broadband and high gain stacked microstrip antenna array," Microwave and Optical Technology Letters, 1-7, 2019, https://doi.org/10.1002/mop.31813.

    11. Ray, K. P., S. Ghosh, and K. Nirmala, "Multilayer multiresonator circular microstrip antennas for broadband and dual-band operations," Microwave and Optical Technology Letters, Vol. 47, No. 5, 489-494, 2005.
    doi:10.1002/mop.21208

    12. Ansari, J. A., N. P. Yadav, A. Mishra, P. Singh, and B. R. Vishvakarma, "Analysis of multilayer rectangular patch antenna for broadband operation," Wireless Personal Communication, Vol. 62, 315-327, 2012.
    doi:10.1007/s11277-010-0055-z

    13. Yeung, S. H. and C.-F. Wang, "Study of a parasitic U-slotpatch array antenna with characteristic mode analysis," Microwave and Optical Technology Letters, Vol. 60, 482-488, 2018, https://doi.org/10.1002/mop.30992.
    doi:10.1002/mop.30992

    14. Chen, H.-D., C.-Y.-D. Sim, J.-Y. Wu, and T.-W. Chiu, "Broadband high-gain microstrip array antennas for WiMAX base station," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 8, 3977-3980, 2012.
    doi:10.1109/TAP.2012.2201116

    15. Lee, S.-R., E.-H. Lim, and F.-L. Lo, "Broadband single-layer E-patch reflectarray," Radioengineering, Vol. 26, No. 1, 97-106, 2017.
    doi:10.13164/re.2017.0097

    16. Cao, W., X. Lv, Q. Wang, Y. Zhao, and X. Yang, "Wideband circularly polarized Fabry-Perot resonator antenna in Ku band," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 4, 586-590, 2019.
    doi:10.1109/LAWP.2019.2896940

    17. Hannachi, C., D. Tarek, and S. O. Tatu, "Broadband waveguide-fed 8-by-1 gap-coupled microstrip antenna array for 60-GHz short-range point-to-point wireless communications," Progress In Electromagnetics Research Letters, Vol. 83, 7-14, 2019.
    doi:10.2528/PIERL18113001

    18. Elboushi, A. and A. Sebak, "High-gain hybrid microstrip/conical horn antenna for MMW applications," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 129-132, 2012.
    doi:10.1109/LAWP.2012.2184256

    19. Kumar, H. and G. Kumar, "A broadband planar modified Quasi-Yagi using log-periodic antenna," Progress In Electromagnetics Research Letters, Vol. 73, 23-30, 2018.
    doi:10.2528/PIERL17102005

    20. Sakthi Abirami, B. and E. F. Sundarsingh, "EBG-backed flexible printed Yagi-Uda Antenna For On-Body Communication," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 7, 3762-3765, 2017.
    doi:10.1109/TAP.2017.2705224

    21. CST Microwave Studio suite, Version 2019, .
    doi:10.1109/TAP.2017.2705224

    22. Deshmukh, A. A. and S. B. Deshmukh, "Wide band designs of 60 sectoral microstrip antenna using parasitic angular sectoral patches," Proceedings of ICWiCOM 2017, Mumbai, India, January 19-20, 2018, https://link.springer.com/chapter/10.1007%2F978-981-10-8339-6 24.