Vol. 87

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Dual-Band Reconfigurable Graphene-Based Patch Antenna in Terahertz Band: Design, Analysis and Modeling Using WCIP Method

By Aymen Hlali, Zied Houaneb, and Hassen Zairi
Progress In Electromagnetics Research C, Vol. 87, 213-226, 2018


The resonant frequency of an antenna plays a crucial role in the design of a reconfigurable antenna. In this article, we have developed a dual-band reconfigurable terahertz patch antenna by using graphene. The simulation results demonstrate that the designed structure can provide excellent properties in terms of dual wide-band performance, frequency-recon guration by applying different voltages on the graphene. These initial results are particularly promising for various applications in the THz regime. Furthermore, we have investigated the effect of the additional parameter such as temperature and relaxation time. The modeling is done by using a new equation of the Wave Concept Iterative Process (WCIP) method, and the validation is achieved by comparison with CST simulator. Here, we propose to develop a new efficient and flexible numerical tool for graphene modeling.


Aymen Hlali, Zied Houaneb, and Hassen Zairi, "Dual-Band Reconfigurable Graphene-Based Patch Antenna in Terahertz Band: Design, Analysis and Modeling Using WCIP Method," Progress In Electromagnetics Research C, Vol. 87, 213-226, 2018.


    1. Kyungho, H., T. K. Nguyen, I. Park, and H. Han, "Terahertz Yagi-Uda antenna for high input resistance," J. Infrared Millim. Terahertz Waves, Vol. 31, 441-451, 2010.

    2. Kazemi, A. H. and A. Mokhtari, "Graphene-based patch antenna tunable in the three atmospheric windows," Inter. J. Light Electron Opt., Vol. 142, 475-482, 2017.

    3. Ramezan, A. S. and B. Z. Ferdows, "Metamaterial Fabry-Perot cavity implementation for gain and bandwidth enhancement of THz dipole antenna," antenna,”Inter. J. Light Electron Opt., Vol. 127, 5181-5185, 2016.

    4. Sirisha, M. and M. Arun, "Dual-band reconfigurable graphene-based patch antenna in terahertz band for wireless network-on-chip applications," IET Micr., A. & Prop., Vol. 11, 2104-2108, 2017.

    5. Mir, M. S. and A. S. Ramazan, "Antenna gain enhancement by using metamaterial radome at THz band with reconfigurable characteristics based on graphene load," J. Opt. Quant. Elec., Vol. 221, 1-13, 2017.

    6. Alexander, I. M., Y. Bin, M. G. Stephen, W. Michael, and S. D. Robert, "Terahertz spectroscopy: A powerful new tool for the chemical sciences?," Chem. Soc. Rev., Vol. 41, 2072-2082, 2012.

    7. Nikita, V. Ch., et al., "Wide-aperture aspherical lens for high-resolut terahertz imaging," Rev. Sci. Instrum., Vol. 88, 1-6, 2017.

    8. Dhillon, S. S., et al., "The 2017 terahertz science and technology roadmap," J. Phy. D: Appl. Phy., Vol. 50, No. 4, 1064-1076, 2017.

    9. Novoselov, K. S., V. I. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, "A roadmap for graphene," Nature, Vol. 490, No. 7419, 192-200, 2012.

    10. Novoselov, K. S., A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric field effect in atomically thin carbon films," Science, Vol. 306, No. 10, 666-669, 2004.

    11. Antonio, P. and Ch. Gennaro, "Plasmon modes in graphene: Status and prospect," The Royal Society of Chemistry, Vol. 6, 10927-10940, 2014.

    12. Tamagnone, M., J. S. Gymez-Dıaz, J. R. Mosig, and J. Perruisseau-Carrier, "Reconfigurable terahertz plasmonic antenna concept using a graphene stack," Appl. Phys. Lett., Vol. 101, 214101-214104, 2012.

    13. Leonardo, V., H. Jin, C. Dominique, P. Antonio, K. Wojciech, and S. V. Miriam, "Efficient terahertz detection in black-phosphorus nano-transistors with selective and controllable plasma-wave, bolometric and thermoelectric response," Scientific Reports, Vol. 6, 1-23, 2016.

    14. Leonardo, V., et al., "Plasma-wave terahertz detection mediated by topological insulators surface states," Nano Letters, Vol. 16, 1-18, 2016.

    15. Tang, W., A. Politano, C. Guo, W. Guo, C. Liu, L.Wang, X. Chen, and W. Lu, "Ultrasensitive room-temperature terahertz direct detection based on a bismuth selenide topological insulator," Adv. Funct. Mater., 1-9, 2018.

    16. Amit, A., S. V. Miriam, V. Leonardo, C. Anna, and P. Antonio, "Plasmonics with two-dimensional semiconductors: From basic research to technological applications," Nanoscale, Vol. 10, 1-11, 2018.

    17. Jung, C. W., M. J. Lee, G. P. Li, and F. D. Flaviis, "Re-configurable scan-beam single-arm spiral antenna integrated with RFMEMS switches ," IEEE Trans. Antennas Propag., Vol. 54, No. 2, 455-463, 2006.

    18. Cetiner, B. A., G. R. Crusats, L. Jofre, and N. Biyikli, "RF MEMS integrated frequency reconfigurable annular slot antenna," Journal Title Abbreviation, Vol. 58, No. 3, 626-632, 2010.

    19. Pringle, L. N., et al., "A reconfigurable aperture antenna based on switched links between electrically small metallic patches," IEEE Trans. Antennas Propag., Vol. 52, No. 6, 1434-1445, 2004.

    20. Aboufoul, T., A. Alomainy, and C. Parini, "Reconfiguring UWB monopole antenna for cognitive radio applications using GaAs FET switches," IEEE Antennas Wireless Propag. Lett., Vol. 11, 392-394, 2012.

    21. Peroulis, D., K. Sarabandi, and L. P. B. Katehi, "Design of reconfigurable slot antennas," IEEE Trans. Antennas Propag., Vol. 53, No. 2, 645-654, 2005.

    22. Lee, S. W. and Y. Sung, "Compact frequency reconfigurable antenna for lte/wwan mobile handset applications," IEEE Trans. Antennas Propag., Vol. 63, No. 10, 4572-4577, 2015.

    23. Khidre, A., F. Yang, and A. Z. Elsherbeni, "A patch antenna with a varactor-loaded slot for reconfigurable dual-band operation ," IEEE Trans. Antennas Propag., Vol. 63, No. 2, 755-760, 2015.

    24. Haupt, R. L., "Re-configurable patch with switchable conductive edges," Microw. Opt. Technol. Lett., Vol. 51, No. 7, 1757-1760, 2009.

    25. Haupt, R. L. and M. Lanagan, "Re-configurable antennas," IEEE Antennas Propag. Mag., Vol. 55, No. 1, 49-61, 2013.

    26. Hanson, G. W., "Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene," J. Ap. Phys., Vol. 103, 064302-064302, 2008.

    27. Cao, Y. S., L. J. Jiang, and A. E. Ruehli, "An equivalent circuit model for graphene-based terahertz antenna using the PEEC method," IEEE Trans. Antennas Prop., Vol. 64, 1385-1393, 2016.

    28. Gatte, M. T., P. J. Soh, H. A. Rahim, R. B. Ahmad, and F. Malek, "The performance improvement of THz antenna via modeling and characterization of doped graphene," Progress In Electromagnetics Research M, Vol. 49, 21-31, 2016.

    29. Houaneb, Z., H. Zairi, A. Gharsallah, and H. Baudrand, "A new wave concept iterative method in cylindrical coordinates for modeling of circular planar circuits," Eighth Inter. Multi-Conference on Systems, Signals Devices, 1-7, 2011.

    30. Hajlaoui, A., H. Trabelsi, and H. Baudrand, "Periodic planar multilayered substrates analysis using wave concept iterative process," J. Elec. Analy. Appl., Vol. 3, 118-128, 2012.

    31. Zairi, H., A. Gharsallah, A. Gharbi, and H. Baudrand, "Analysis of planar circuits using a multigrid iterative method ," IEE Proc. Micro., Antennas and Prop., Vol. 153, 109-162, 2006.

    32. Tellache, M., Y. Lamhene, B. Haraoubia, and H. Baudrand, "Application of wave concept iterative process to analys emicrowave planar circuits," Inter. J. App. Electr. and Mechanics, Vol. 29, 131-143, 2009.