Vol. 83

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2018-04-08

Beam Focusing Compact Wideband Antenna Loaded with MU-Negative Metamaterial for Wireless LAN Application

By Sourav Roy, Krishna Lal Baishnab, and Ujjal Chakraborty
Progress In Electromagnetics Research C, Vol. 83, 33-44, 2018
doi:10.2528/PIERC18012908

Abstract

This article proposes a beam focusing compact wideband microstrip antenna loaded with mu negative (MNG) metamaterial. The antenna is designed to operate in the frequency spectra of IEEE 802.11a wireless LAN 5.15-5.85 GHz. The controlling of the beam direction has been investigated using eight different switching combinations of 12 PIN diodes which are integrated in the metamaterial unit cells. The main beam is found to be focused in -ve y, +ve y and omnidirectional in yz plane in agreement with switching condition of the metamaterial unit cell. The maximum gain enhancement of 7 dB is obtained at 4.9 GHz as the beam of the power pattern is focused in the negative y direction. The basic antenna with patch dimension (0.14λ × 0.14λ) provides wide impedance bandwidth of about 40%. Two prototypes of basic and proposed antennas have been developed using a low profile FR-4 substrate. The simulation results are found in good agreement with the measurement ones.

Citation


Sourav Roy, Krishna Lal Baishnab, and Ujjal Chakraborty, "Beam Focusing Compact Wideband Antenna Loaded with MU-Negative Metamaterial for Wireless LAN Application," Progress In Electromagnetics Research C, Vol. 83, 33-44, 2018.
doi:10.2528/PIERC18012908
http://jpier.org/PIERC/pier.php?paper=18012908

References


    1. Brown, E. R., "RF-MEMS switches for reconfigurable integrated circuits," IEEE Trans. Microw. Theory Tech., Vol. 46, No. 11, 1868-1880, Nov. 1998.
    doi:10.1109/22.734501

    2. Bai, Y.-Y., S. Xiao, M.-C. Tang, Z.-F. Ding, and B.-Z. Wang, "Wide-angle scanning phased array with pattern reconfigurable elements," IEEE Trans. Antennas Propag., Vol. 59, No. 11, 4071-4076, Nov. 2011.

    3. Ren, J., X. Yang, J.-Y. Yin, and Y.-Z. Yin, "A novel antenna with reconfigurable patterns using H-shaped structures," IEEE Antennas Wireless Propag. Lett., Vol. 14, 915-918, Jan. 2015.
    doi:10.1109/LAWP.2014.2387292

    4. Akgol, O., O. Altintas, E. E. Dalkilinc, E. Unal, M. Karaaslan, and C. Sabah, "Metamaterial absorber-based multi sensor applications using a meander-line resonator," Optical Engineering, Vol. 56, No. 8, 087104, Aug. 2017.
    doi:10.1117/1.OE.56.8.087104

    5. Altintas, O., M. Aksoy, O. Akgol, E. Unal, M. Karaaslan, and C. Sabahc, "Fluid, strain and rotation sensing applications by using metamaterial based sensor," Journal of the Electrochemical Society, Vol. 164, No. 12, B567-B573, 2017.
    doi:10.1149/2.1971712jes

    6. Bakir, M., M. Karaaslan, O. Altintas, M. Bagmanci, V. Akdogan, and F. Temurtas, "Tunable energy harvesting on UHF bands especially for GSM frequencies," International Journal of Microwave and Wireless Technologies, 1-10, 2017.

    7. Akgol, O., O. Altintas, E. Unal, M. Karaaslan, and F. Karadag, "Linear to left- and right-hand circular polarization conversion by using a metasurface structure," International Journal of Microwave and Wireless Technologies, 2017.

    8. Altintas, O., E. Unal, O. Akgol, M. Karaaslan, F. Karadagy, and C. Sabahz, "Design of a wide band metasurface as a linear to circular polarization converter," Modern Physics Letters B, 2017.

    9. Xu, Z. X. and W. G. Lin, "Controllable absorbing structure of metamaterial at microwave," Progress In Electromagnetics Research, Vol. 69, 117-125, 2007.
    doi:10.2528/PIER06120801

    10. Karaaslan, M., E. Unal, E. Tetik, K. Delihacıog, F. Karadag, and F. Dincer, "Low profile antenna radiation enhancement with novel electromagnetic band gap structures," IET Microw. Antennas Propag., Vol. 7, No. 3, 215-221, 2013.
    doi:10.1049/iet-map.2012.0545

    11. Hwang, R.-B., H.-W. Liu, and C.-Y. Chin, "A metamaterial-based E-plane horn antenna," Progress In Electromagnetics Research, Vol. 93, 275-289, 2009.
    doi:10.2528/PIER09050606

    12. Patel, S. K., C. Argyropoulos, and Y. P. Kosta, "Pattern controlled and frequency tunable microstrip antenna loaded with multiple split ring resonators using RF MEMS switches,", DOI: 10.1049/iet-map.2017.0319.

    13. Dadgarpour, A., B. Zarghooni, B. S. Virdee, and T. A. Denidni, "Beam tilting antenna using integrated metamaterial loading," IEEE Trans. Antennas Propag., Vol. 62, No. 5, 2874-2879, May 2014.
    doi:10.1109/TAP.2014.2308516

    14. Kim, I. and Y. Rahmat-Samii, "Electromagnetic band gap-dipole sub array antennas creating an enhanced tilted beams for future base station," IET Microw. Antennas Propag., Vol. 9, No. 4, 319-327, 2015.
    doi:10.1049/iet-map.2014.0104

    15. Patel, S. K. and C. Argyropoulos, "Enhanced bandwidth and gain of compact microstrip antennas loaded with multiple corrugated split ring resonators," Journal of Electromagnetic Waves and Applications, Vol. 30, No. 7, 945-961, 2016.
    doi:10.1080/09205071.2016.1167633

    16. Rezaeieh, S. A., M. A. Antoniades, and A. M. Abbosh, "Compact wideband loop antenna partially loaded with mu-negative metamaterial unit cells for directivity enhancement," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1893-1896, 2016.
    doi:10.1109/LAWP.2016.2542799

    17. Li, D., Z. Szabo, X. Qing, E. Li, and Z. N. Chen, "A high gain antenna with an optimized metamaterial inspired superstrate," IEEE Trans. Antennas Propag., Vol. 60, No. 12, 6018-6023, Dec. 2012.
    doi:10.1109/TAP.2012.2213231

    18. Yu, A., F. Yang, and A. Elsherbeni, "A dual band circularly polarized ring antenna based on composite right and left handed metamaterials," Progress In Electromagnetics Research, Vol. 78, 73-81, 2008.
    doi:10.2528/PIER07082902

    19. Numan, A. B. and M. S. Sharawi, "Extraction of material parameters for metamaterials using a full-wave simulator," IEEE Antennas Propag. Magaz., Vol. 55, No. 5, 202-211, Oct. 2013 (in English).
    doi:10.1109/MAP.2013.6735515

    20. Ziolkowski, R. W., "Design, fabrication, and testing of double negative metamaterials," IEEE Trans. Antennas Propag., Vol. 51, No. 7, 1516-1529, Jul. 2003.
    doi:10.1109/TAP.2003.813622