Vol. 79
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-11-30
Design, Optimization and Initial Testing of a High-Speed 5-kW Permanent Magnet Generator for Aerospace Application
By
Progress In Electromagnetics Research C, Vol. 79, 225-240, 2017
Abstract
The article presents a new topology of the high-speed synchronous electrical machines with permanent magnets with the tooth-coil windings with a stator magnetic core made of amorphous alloys for prospective unmanned aerial vehicles. This is a multidisciplinary design algorithm with optimization elements, which are proposed to design such machines. Based on the proposed algorithm, calculations of several topologies were performed by using computer simulation methods. In addition, the analysis of the rotor dynamics as part of the turbojet engine of the unmanned aerial vehicle and the calculations of the mechanical rotor strength were performed. To minimize the eddy-current losses in permanent magnets, the multicriteria optimization of the slotted zone was carried out by using genetic algorithms. A cooling system was proposed, and thermal calculations were performed. To verify the proposed design algorithm and to evaluate the efficiency of the amorphous alloy, a full-sized 5 kW experimental sample with a rotational speed of 60,000 rpm was created. Results can be used to create new promising UAVs and to design electrical machines for other industrial applications.
Citation
Flur R. Ismagilov, Viacheslav Vavilov, Aybulat H. Miniyarov, Aleksey Mihailovich Veselov, and Valentina V. Ayguzina, "Design, Optimization and Initial Testing of a High-Speed 5-kW Permanent Magnet Generator for Aerospace Application," Progress In Electromagnetics Research C, Vol. 79, 225-240, 2017.
doi:10.2528/PIERC17091805
References

1. Larbi, M., K. Meguenni, Y. Meddahi, and M. Litim, "Nonlinear observer and backstepping control of quadrotor unmanned aerial vehicle," International Review of Aerospace Engineering (IREASE), Vol. 6, No. 5, 233-242, 2013.

2. Yun, J., S. Cho, H. C. Liu, H.-W. Lee, and J. Lee, "Design of electromagnetic field of permanent magnet generator for VTOL series-hybrid UAV," 2015 18th International Conference on Electrical Machines and Systems, ICEMS, 83-86, 2016.

3. Besnard, J.-P., F. Biais, and M. Martinez, "Electrical rotating machines and power electronics for new aircraft equipment systems," ICAS — Secretariat — 25th Congress of the International Council of the Aeronautical Sciences, 1-9, 2006.

4. Chun, J., H.-C. Song, M.-G. Kang, H. B. Kang, R. Kishore, and S. Priya, "Thermo-magneto-electric generator arrays for active heat recovery system," Sci. Rep., Vol. 7, No. 41383, 1-8, 2017.

5. Secttnde, R. R., R. P. Macosko, and D. S. Repas, "Integrate Engine — Generator concept for aircraft electric secondary power,", National Aeronautics and Space Administration, NASA/TM X 2579, Washington, D.C., June 1972.

6. Nukki, R., A. Kilk, A. Kallaste, T. Vaimann, and K. Sr. Tiimus, "Exterior-rotor permanent magnet synchronous machine with toroidal windings for unmanned aerial vehicles," 9th International: 2014 Electric Power Quality and Supply Reliability Conference, PQ, 215-220, 2014.
doi:10.1109/PQ.2014.6866813

7. Vavilov, V. E., F. R. Ismagilov, I. K. Khayrullin, and R. D. Karimov, "Multi-disciplinary design of high-RPM electric generator with external rotor for unmanned aerial vehicle," International Review of Aerospace Engineering, Vol. 9, No. 4, 123-130, 2016.
doi:10.15866/irease.v9i4.10340

8. Upadhayay, P. and V. Patwardhan, "Magnet eddy-current losses in external rotor permanent magnet generator," Proceedings of 2013 International Conference on Renewable Energy Research and Applications, ICRERA, Vol. 6749911, 1068-1071, 2013.
doi:10.1109/ICRERA.2013.6749911

9. Koo, V. C., Y. K. Chan, and V. Gobi, "A new unmanned aerial vehicle synthetic aperture radar for environmental monitoring," Progress In Electromagnetics Research, Vol. 122, 245-268, 2012.
doi:10.2528/PIER11092604

10. Uzhegov, N., J. Pyrhonen, and S. Shirinskii, "Loss minimization in high-speed permanent magnet synchronous machines with tooth-coil windings," IECON Proceedings (Industrial Electronics Conference), Vol. 6699601, 2960-2965, 2013.

11. Nagorny, A., N. Dravid, R. Jansen, and B. Kenny, "Design aspects of a high speed permanent magnet synchronous motor/generator for flywheel applications,", NASA/TM-2005-213651, 1–7, 2005.

12. Chin, Y. K., "A permanent magnet synchronous motor for traction application of electric vehicle," IEEE Int. Electric Machines and Drive Conference, Vol. 2, 1035-1041, 2003.
doi:10.1109/IEMDC.2003.1210362

13. Gieras, J. F., "High speed machines," Advancements in Electric Machines (Power Systems), 81-113, 2008.
doi:10.1007/978-1-4020-9007-3_4

14. Borisavljevic, A., H. Polinder, and J. Ferreira, "On the speed limits of permanent-magnet machines," IEEE Transactions on Industrial Electronics, Vol. 57, No. 1, 220-227, 2010.
doi:10.1109/TIE.2009.2030762

15. Vavro, J., M. Kianicova, J. Vavro, Jr., and A. Vavrova, "Modal and frequency analysis for rotor blades of turbo-jet engine TJ 100," University Review, Vol. 7, No. 4, 47-50, 2013.

16. Harris, M. M., A. C. Jones, and E. J. Alexande, "Miniature turbojet development at Hamilton Sundstrand the TJ-50, TJ-120 and TJ -30 turbojets," 2nd AIAA “Unmanned Unlimited” Systems, Technologies, and Operations, Aerospac, San Diego, California, 1–9, 2003.

17. Gruzkov, S. A., et al. "Electrical equipment of aircrafts. Power supply systems for aircraft,", Moscow Power Engineering Institute, Moscow, 2005.

18. Borg Bartolo, J., M. Degano, J. Espina, and C. Gerada, "Design and initial testing of a highspeed 45-kW switched reluctance drive for aerospace application," IEEE Transactions on Industrial Electronics, Vol. 64, No. 2, Vol. 7592921, 988–997, 2016.

19., Electric propulsion components with high power densities for aviation [Online], available: https://nari.arc.nasa.gov/sites/default/files/attachments/Korbinian-TVFW-Aug2015.pdf.

20. Ganev, E., "High-performance electric drives for aerospace more electric architectures," IEEE Power Engineering Society Meeting, 1-8, 2007.

21. Ganev, E., "Selecting the best electric machines for electrical power generation systems," IEEE Electrication Magazine, Vol. 2, No. 4, 13-22, 2014.
doi:10.1109/MELE.2014.2364731

22. Wang, Z., Y. Enomoto, M. Ito, et al. "Development of a permanent magnet motor utilizing amorphous wound cores," IEEE Trans. Magn., Vol. 46, No. 2, 570-573, 2010.
doi:10.1109/TMAG.2009.2033350

23. Wang, Z., Y. Enomoto, M. Ito, et al. "Development of an axial gap motor with amorphous metal cores," IEEE Trans. Ind. Appl., Vol. 47, No. 3, 1293-1299, 2011.
doi:10.1109/TIA.2011.2127430

24. Ruhrig, M., "Stator f¨ureineelektrische Maschine und Verfahrenzum Herstelleneines Stators f¨ureine elektrische Maschine,", Patent DE 102012207508 A1, 07.05.2012.

25. Yakupov, A., F. Ismagilov, I. Khayrullin, and V. Vavilov, "Method of designing high-speed generators for the biogas plant," International Journal of Renewable Energy Research, Vol. 6, No. 2, 447-454, 2016.

26. Uzhegov, N., E. Kurvinen, J. Nerg, J. T. Sopanen, and S. Shirinskii, "Multidisciplinary design process of a 6-slot 2-pole high-speed permanent-magnet synchronous machine," IEEE Transactions on Industrial Electronics, Vol. 63, No. 2, 784-795, 2016.
doi:10.1109/TIE.2015.2477797

27. Zwyssig, C., J. W. Kolar, and S. D. Round, "Mega-speed drive systems: Pushing beyond 1 million RPM. Mechatronics," IEEE/ASME Transactions, Vol. 14, No. 5, 564-574, 2009.
doi:10.1109/TMECH.2008.2009310