Vol. 70
Latest Volume
All Volumes
PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2017-01-09
A Triangle Array of 1x4 Slots Antenna with Curved EBG Structures for Cellular Base Station
By
Progress In Electromagnetics Research C, Vol. 70, 155-164, 2016
Abstract
In this paper, a slot array with a new technique of metamaterial on Electromagnetic Band Gap (EBG) structure is used to demonstrate the possibility of building high gain top-mounted antenna for mobile base station. We describe the method for gain improvement by transferring the electromagnetic fields from a 1×4 slot array with a PEC reflector radiated through the cavity of curved woodpile EBG. The proposed technique not only has the advantages of reducing the total length of the slot array, but also provides higher gain and easier installation. In addition, to provide the azimuth patterns covering 360° around the base station, a triangular array configuration consisting of three panels of such an antenna array has also been presented, while the fabricated cavity of the curved woodpile EBG structure exhibits band gap characteristics at 2.1 GHz for realizing a resonant cavity of the slot array. This idea is verified by comparing between the results from Computer Simulation Technology (CST) software and the experimental results. Finally, it is found that the measured and simulated results are in a good qualitative agreement, and the antenna prototype yields directive gain of each panel around 17.1-17.2 dBi.
Citation
Rangsan Wongsan, and Paowphattra Kamphikul, "A Triangle Array of 1x4 Slots Antenna with Curved EBG Structures for Cellular Base Station," Progress In Electromagnetics Research C, Vol. 70, 155-164, 2016.
doi:10.2528/PIERC16091601
References

1. Bahl, J. J. and P. Bhartia, Mircostrip Antennas, Artech House, 1980.

2. Bhartia, P., I. Bahl, R. Garg, and A. Ittipipoon, Mircostrip Antennas Design Handbook, Artech House, 2000.

3. Kumar, G. and K. C. Gupta, "Directly coupled multiple resonator wide-band microstrip antenna," IEEE Transactions on Antennas and Propagation, Vol. 33, No. 6, 588-593, 1985.
doi:10.1109/TAP.1985.1143639

4. Pozar, D.M., "Microstrip antenna aperture-coupled to a microstripline," Electronics Letters, Vol. 21, No. 2, 49-50, 1985.
doi:10.1049/el:19850034

5. Huynh, T. and K. F. Lee, "Single-layer single-patch wide band microstrip antenna," Electronics Letters, Vol. 31, No. 16, 1310-1312, 1995.
doi:10.1049/el:19950950

6. Yang, F., X. Zhang, X. Ye, and Y. Rahmat-Samii, "Wide band E-shaped patch antennas for wireless communications," IEEE Transactions on Antennas and Propagation, Vol. 49, No. 7, 1094-1100, 2001.
doi:10.1109/8.933489

7. Chawanonphithak, Y. and C. Phongcharoenpanich, "An ultra-wideband circular microstrip antenna fed by microstrip line above wide-slot ground plane," Asia-Pacific Conference on Communications (APCC), Bangkok, Thailand, October 2007.

8. Yang, F. and Y. Rahmat-Samii, Electromagnetic Band Gap Structures in Antenna Engineering, Cambridge University Press, Cambridge, 2009.

9. Elayachi, M., P. Brachat, and P. Ratajczak, "EBG identification by the Reflection Phase Method (RPM) design for application WiFi antenna," Proceedings of the First European Conference on Antennas and Propagation (EuCAP), 1-5, 2006.

10. Joannopoulos, J. D., R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton University Press, New Jersey, 1995.

11. Gonzalo, R., P. de Maagt, and M. Sorolla, "Enhanced path-antenna performance by suppressing surface waves using photonic-bandgap substrates," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2131-2138, 1999.
doi:10.1109/22.798009

12. Yang, F. and Y. Rahmat-Samii, "Microstrip antennas integrated with Electromagnetic Bandgap (EBG) structures: A low mutual coupling design for array applications," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2936-2946, 2003.
doi:10.1109/TAP.2003.817983

13. Llombart, N., A. Neto, G. Gerini, and P. de Maagt, "Planar circularly symmetric ebg structures for reducing surface waves in printed antennas," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 10, 3210-3218, 2005.
doi:10.1109/TAP.2005.856365

14. Illuz, Z., R. Shavit, and R. Bauer, "Micro-strip antenna phased array with electromagnetic bandgap substrate," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 6, 1446-1453, 2004.
doi:10.1109/TAP.2004.830252

15. Kamphikul, P., P. Krachodnok, and R. Wongsan, "High-gain antenna for base station using MSA and triangular EBG cavity," PIERS Proceedings, 534-537, Kuala Lumpur, Malaysia, March 27–30, 2012.

16. Kamphikul, P., P. Krachodnok, and R. Wongsan, "High gain mobile base station antenna using curved woodpile EBG technique," World Academy of Science, Engineering and Technology (WASET), Vol. 8, No. 7, 910-916, 2014.

17. Weily, A. R., L. Horvath, K. P. Esselle, B. Sanders, and T. Bird, "A planar resonator antenna based on woodpile EBG material," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 1, 216-223, 2005.
doi:10.1109/TAP.2004.840531

18. Lee, Y., X. Lu, Y. Hao, S. Yang, J. R. G. Evans, and C. G. Parini, "Low profile directive millimeterwave antennas using free formed three-dimensional (3D) electromagnetic band gap structures," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 10, 2893-2903, 2009.
doi:10.1109/TAP.2009.2029299