Vol. 54

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2014-10-13

A Wideband and High Gain Dual-Polarzied Antenna Design by a Frequency-Selective Surface for WLAN Application

By Hua Zhu, Yang Yu, Xiuping Li, and Bo Ai
Progress In Electromagnetics Research C, Vol. 54, 57-66, 2014
doi:10.2528/PIERC14072801

Abstract

A new dual-polarized antenna loading frequency-selective surface (FSS) is proposed for 5G wireless local networks (WLANs) application. The antenna consists of two orthogonal bow-tie dipoles and a ground plane. A new wideband FSS is designed comprising ring-slot connecting rectangular slots. The reflection coefficient of wideband FSS is less than 0.9 from 4-6.5 GHz. The phase of reflection coefficient is -163°at 5.5 GHz. The novel cell analyzed by the equivalent circuit is given and simulated. The wideband FSS is employed as a superstrate layer for bandwidth enhancement and radiation gain improvement of the antenna. After loading wideband FSS, the measured bandwidth is 5.3-6.3 GHz (17.2%) with S11 and S22 both less than -10 dB, which cover various 5G WLAN bandwidths. The gain of the antenna is 12.1 dBi at 5.5 GHz. The bandwidth of antenna with FSS increases 40%, and gain improves 5.6 dBi. The simulated and measured results agree well.

Citation


Hua Zhu, Yang Yu, Xiuping Li, and Bo Ai, "A Wideband and High Gain Dual-Polarzied Antenna Design by a Frequency-Selective Surface for WLAN Application," Progress In Electromagnetics Research C, Vol. 54, 57-66, 2014.
doi:10.2528/PIERC14072801
http://jpier.org/PIERC/pier.php?paper=14072801

References


    1. See, T. S. P. and Z. N. Chen, "Design of dual-polarization stackedarrays for ISM band applications," Microw. Opt. Technol. Lett., Vol. 38, 142-147, Jul. 2003.
    doi:10.1002/mop.10998

    2. Chang, F. S., H. T. Chen, K. C. Chao, and K. L. Wong, "Dual-polarized probe-fed patch antenna with highly decoupled ports for WLAN basestation," IEEE Antennas Propag. Soc. Int. Symp. Dig., 101-109, Monterey, CA, USA, 2004.

    3. Guo, Y. X. and K. M. Luk, "Dual-polarized dielectric resonator antennas," IEEE Transactions on Antennas and Propagation, Vol. 51, 1120-1124, May 2003.
    doi:10.1109/TAP.2003.811486

    4. Su, S.-W. and C.-T. Lee, "Printed, low-cost, dual-polarized dual-loop-antenna system for 2.4/5GHz WLAN access points," Proceedings of the 5th European Conference Antennas and Propagation (EUCAP), 1253-1257, 2011.

    5. Zheng, W. C., L. Zhang, Q. X. Li, and Y. Leng, "Dual-band dual-polarized compact bowtie antenna array for anti-interference MIMO WLAN," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 1, 237-246, Jan. 2014.
    doi:10.1109/TAP.2013.2287287

    6. Su, S.-W. and C.-T. Lee, "Printed, low-cost, dual-polarized dual-loop-antenna system for 2.4/5GHz WLAN access points," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 5, 1653-1659, May 2011.
    doi:10.1109/TAP.2011.2123070

    7. Wong, K. L., H. C. Tung, and T. W. Chiou, "Broadband dual-polarize daperture-coupled patch antennas with modified H-shaped coupling slots," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 2, 188-191, Feb. 2002.
    doi:10.1109/8.997993

    8. Gao, S. C., L. W. Li, M. S. Leong, and T. S. Yeo, "Dual-polarized slot coupled planar antenna with wide bandwidth," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 3, 441-448, Mar. 2003.
    doi:10.1109/TAP.2003.809842

    9. Li, B., Y.-Z. Yin, W. Hu, Y. Ding, and Y. Zhao, "Wideband dual-polarized patch antenna with low cross polarization and high isolation," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 427-429, 2012.

    10. Kaboli, M., S. A. Mirtaheri, and M. S. Abrishamian, "High-isolation X-polar antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 401-404, 2010.
    doi:10.1109/LAWP.2010.2049557

    11. Jia, T. and X. Li, "A compact stacked bidirectional antenna for dual-polarized WLAN applications," Progress In Electromagnetics Research C, Vol. 44, 95-108, 2013.
    doi:10.2528/PIERC13082204

    12. Moghadas, H. and M. Daneshmand, "Dual-band dual-polarized high-gain resonant cavity antenna," IEEE International Symposium Antennas and Propagation (APSURSI), 2246-2249, 2011.
    doi:10.1109/APS.2011.5996963

    13. Capobianco, A., F. M. Pigozzo, A. Assalini, M. Midrio, S. Boscolo, and F. Sacchetto, "A compact MIMO array of planar end-fire antennas for WLAN applications," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 9, 3462-3465, Sep. 2011.
    doi:10.1109/TAP.2011.2161557

    14. Chuang, H.-R. and L.-C. Kuo, "3-D FDTD design analysis of a 2.4-GHz polarization-diversity printed dipole antenna with integrated balun and polarization-switching circuit for WLAN and wireless communication applications," IEEE Trans. Microwave Theory and Technique, Vol. 51, 374-381, 2003.
    doi:10.1109/TMTT.2002.807838

    15. Cook, B. S. and A. Shamim, "Utilizing wideband AMC structures for high-gain inkjet-printed antennas on lossy paper substrate," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 76-79, 2013.
    doi:10.1109/LAWP.2013.2240251

    16. Kim, D., "Novel dual-band Fabry-Perot cavity antenna with low frequency separation ratio," Microw. Opt. Technol. Lett., Vol. 51, No. 8, 1869-1872, Aug. 2009.
    doi:10.1002/mop.24509

    17. Sauleau, R. and P. Coquet, "Input impedance of electromagnetic bandgap resonator antennas," Microw. Opt. Technol. Lett., Vol. 41, No. 5, 369-375, Jun. 2004.
    doi:10.1002/mop.20144

    18. Rodes, E., M. Diblanc, E. Arnaud, T.Monediere, and B. Jecko, "Dual-band EBG resonator antenna using a single-layer FSS," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 368-371, 2007.
    doi:10.1109/LAWP.2007.902808

    19. Wu, Z.-H. and W.-X. Zhang, "Broadband printed compound air-fed array antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 187-190, 2010.

    20. Almeida Filho, V. A. and A. L. P. de Siqueira Campos, "Performance optimization of microstrip antenna array using frequency selective surfaces," J. Microw. Optoelectron. Electromagn. Appl., Vol. 13, No. 1, 31-46, 2014.
    doi:10.1590/S2179-10742014000100003

    21. Brito, D. B., A. G. d’Assun¸c˜ao, R. H. C. Mani¸coba, and X. Begaud, "Metamaterial inspired fabry-perot antenna with cascaded frequency selective surfaces," Microw. Opt. Technol. Lett., Vol. 55, 981-985, 2013.
    doi:10.1002/mop.27531

    22. Pirhadi, A., H. Bahrami, and J. Nasri, "Wideband high directive aperture coupled microstrip antenna design by using a FSS superstrate layer," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 4, 2101-2106, Apr. 2012.
    doi:10.1109/TAP.2012.2186230

    23. Moharamzadeh, E. and A. M. Javan, "Triple-band frequency-selective surfaces to enhance gain of X-band triangle slot antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1145-1148, 2013.
    doi:10.1109/LAWP.2013.2281074

    24. Kanjanasit, K. and C. Wang, "A high directivity broadband aperture coupled patch antenna using a metamaterial based superstrate," 2012 Loughborough Antennas & Propagation Conference, 1-4, 2012.
    doi:10.1109/LAPC.2012.6403004

    25. Pirhadi, A., M. Hakkak, F. Keshmiri, and R. K. Baee, "Design of compact dual band high directive electromagnetic bandgap (EBG) resonator antenna using artificial magnetic conductor," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 6, 1682-1699, Jun. 2007.
    doi:10.1109/TAP.2007.898598

    26. Ge, Y. and K. P. Esselle, "A resonant cavity antenna based on an optimized thin superstrate," Microw. Opt. Technol. Lett., Vol. 50, No. 12, 3057-3059, Dec. 2008.
    doi:10.1002/mop.23898

    27. Sun, Y., Z. N. Chen, Y. Zhang, H. Chen, and T. S. P. See, "Subwavelength substrate-integrated Fabry-P´erot cavity antennas using artificial magnetic conductor," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 1, 30-35, Jan. 2012.
    doi:10.1109/TAP.2011.2167902

    28. Feresidis, A. P. and J. C. Vardaxoglou, "High gain planar antenna using optimized partially reflective surfaces," Proc. Inst. Elect. Eng. Microw. Antennas Propag., Vol. 148, No. 6, 345-350, Dec. 2001.
    doi:10.1049/ip-map:20010828

    29. Wang, D., W. Che, Y. Chang, K.-S. Chin, and Y. L. Chow, "A low-profile frequency selective surface with controllable triband characteristics," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 468-471, 2013.
    doi:10.1109/LAWP.2013.2254459

    30. Garg, R., P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, Artech House, Norwood, MA, 2001.

    31. Wang, S., A. P. Feresidis, G. Goussetis, and J. C. Vardaxoglou, "High gain subwavelength resonant cavity antennas based on metamaterial ground planes," IEE Proc. Microw. Antennas. Propag., Vol. 153, No. 1, 1-6, 2006.
    doi:10.1049/ip-map:20050090