Vol. 37

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2013-01-24

A Magneto-Inductive Link Budget for Wireless Power Transfer and Inductive Communication Systems

By Johnson Ihyeh Agbinya
Progress In Electromagnetics Research C, Vol. 37, 15-28, 2013
doi:10.2528/PIERC12120511

Abstract

This paper presents a propagation model and inductive link budget based on link equations for chains of inductive loops as the basis for determining the link budget of an inductive communication and wireless power transfer systems. The link between the transmitter and receiver is modeled in similar format as in radio frequency systems. The transmitter antenna gain, path loss model and receiver antenna gain are also modeled for the inductive case. This allows the magnetic path loss to be estimated accurately. Also the induced receiver current due to a transmitter voltage can be computed apriori enabling efficient design of inductive links and transceivers.

Citation


Johnson Ihyeh Agbinya, "A Magneto-Inductive Link Budget for Wireless Power Transfer and Inductive Communication Systems," Progress In Electromagnetics Research C, Vol. 37, 15-28, 2013.
doi:10.2528/PIERC12120511
http://jpier.org/PIERC/pier.php?paper=12120511

References


    1. Lee, D. J. Y. and W. C. Y. Lee, "Enhanced Lee model from rough terrain data sampling aspect," Proc. IEEE 72nd Vehicular Technology Conference Fall (VTC 2010-Fall), 1-5, 2010.
    doi:10.1109/VETECF.2010.5594587

    2. Castro, B. S. L., I. R. Gomes, F. C. J. Ribeiro, and G. P. S. Cavalcante, "COST231-Hata and SUI models performance using a LMS tuning algorithm on 5.8 GHz in Amazon region cities," Proc. Fourth European Conference on Antennas and Propagation (Eu-CAP), 1-3, 2010.

    3. Chen, Q., S. C. Wong, C. K. Tse, and X. Ruan, "Analysis, design, and control of a transcutaneous power regulator for artificial hearts," IEEE Transactions on Biomedical Circuits & Systems, Vol. 3, No. 1, 23-31, 2009.
    doi:10.1109/TBCAS.2008.2006492

    4. Agbinya, J. I., "Framework for wide area networking of inductive Internet of things," Electronics Letters, Vol. 47, No. 21, 1199-120, Oct. 13, 2011.
    doi:10.1049/el.2011.2757

    5. Kurs, A. , A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, "Wireless power transfer via strongly coupled magnetic resonances," Sci., Vol. 317, 83-86, Jul. 2007.

    6. Agbinya, J. I., N. Selvaraj, A. Ollett, S. Ibos, Y. Ooi-Sanchez, M. Brennan, and Z. Chaczko, "Size and characteristics of the 'cone of silence' in near field magnetic induction communications," Journal of Battlefield Technology, Mar. 2010.

    7. Sun, Z. and I. F. Akyildiz, "Underground wireless communication using magnetic induction," Proc. IEEE ICC 2009, Dresden, Germany, Jun. 2009.

    8. Akyildiz, I. F., Z. Sun, and M. C. Vura, "Signal propagation techniques for wireless underground communication networks," Physical Communication, Vol. 2, 167-183, 2009 (in Elsevier).
    doi:10.1016/j.phycom.2009.03.004

    9. Syms, R. R. A. , E. Shamonina, and L. Solymar, "Magneto-inductive waveguide devices," Proceedings of IEE Microwaves Antenna and Propagation, Vol. 153, No. 2, 111-121, 2006.
    doi:10.1049/ip-map:20050119

    10. Syms, R. R. A. and L. Solymar, "Bends in Magneto-inductive waveguides," Metamaterials, 2010.

    11. Syms, R. R. A., L. Solymar, I. R. Young, and T. Floume, "Thin-film magneto-inductive cables," Journal of Physics D, Vol. 43, 2010.
    doi:10.1088/0022-3727/43/28/285003

    12. Syms, R. R. A., L. Solymar, and I. R. Young, "Three-frequency parametric amplification in magneto-inductive ring resonators," Metamaterials, Vol. 2, 122-134, 2008.
    doi:10.1016/j.metmat.2008.03.003

    13. Syms, R. R. A., I. R. Young, and L. Solymar, "Low-loss magneto-inductive waveguides," Journal of Physics D: Applied Physics, Vol. 39, 3945-3951, 2006.
    doi:10.1088/0022-3727/39/18/004

    14. Syms, R. R. A., O. Sydoruk, E. Shamonina, and L. Solymar, "Higher order interactions in magneto-inductive waveguides," Metamaterials, Vol. 1, 44-51, 2007.
    doi:10.1016/j.metmat.2007.02.005

    15. Kalinin, V. A., K. H. Ringhofer, and L. Solymar, "Magneto-inductive waves in one, two and three dimensions," Journal of Applied Physics, Vol. 92, No. 10, 6252-6261, 2002.
    doi:10.1063/1.1510945

    16. Agbinya, J. I. and M. Masihpour, "Near field magnetic induction communication link budget: Agbinya-Masihpour model," Proc. of IB2Com, 1-6, Malaga, Spain, Dec. 15-18, 2010.

    17. Fatiha, E. H., G. Marjorie, P. Stephane, and P. Odile, "Magnetic in-body and on-body antennas operating at 40MHz and near field magnetic induction link budget," Proc. EuCAP, 1-5, 2012.

    18. Azad, U., H. C. John, and Y. E. Wang, "Link budget and capacity performance of inductively coupled resonant loops," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 5, 2453-2461, May 2012.
    doi:10.1109/TAP.2012.2189696

    19. Ramos, G. V. and J.-S. Yuan, "FEM simulation to characterize wireless electric power transfer elements," 2012 Proceedings of IEEE Southeastcon, 1-4, Mar. 15-18, 2012.

    20. Fatiha, E. H. , G. Marjorie, S. Protat, and O. Picon, "Link budget of magnetic antennas for ingestible capsule at 40 MHz," Progress In Electromagnetics Research, Vol. 134, 111-131, 2013.

    21. Masihpour, M. and J. I. Agbinya, "Cooperative relay in near field magnetic induction: A new technology for embedded medical communication systems," Proc. of IB2Com, Malaga, Spain, Dec. 15-18, 2010.

    22. Agbinya, J. I. and M. Masihpour, "Magnetic induction channel models and link budgets: A comparison between two Agbinya-Masihpour models," Proc. the Third International Conference on Communications and Electronics (ICCE 2010), 400-405, Nha Trang, Vietnam, Aug. 11-13, 2010.