Vol. 33
Latest Volume
All Volumes
PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2012-10-19
A Symmetrical Dual-Band Terahertz Metamaterial with Cruciform and Square Loops
By
Progress In Electromagnetics Research C, Vol. 33, 259-267, 2012
Abstract
A symmetrical terahertz metamaterial for dual-band operation is designed and fabricated. The proposed metamaterial is composed of periodically arranged cruciform and square metal loops. Due to the symmetrical structure, this metamaterial is insensitive with the polarization of the incident wave. Transmission and reflection characteristics of the proposed structure are simulated using Ansoft HFSS, and the negative permittivity is figured out in 378-500 GHz and 626-677 GHz bands. The designed sample is fabricated on a gallium arsenide layer, and experiments are performed in Terahertz Time-Domain Spectroscopy. The experimental results agree well with the simulations.
Citation
Biao Li, Lianxing He, Ying-Zeng Yin, Wanyi Guo, and Xiao-Wei Sun, "A Symmetrical Dual-Band Terahertz Metamaterial with Cruciform and Square Loops," Progress In Electromagnetics Research C, Vol. 33, 259-267, 2012.
doi:10.2528/PIERC12091307
References

1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of permittivity and permeability," Sov. Phys. Usp., Vol. 10, No. 4, 509-514, Jan.-Feb. 1968.
doi:10.1070/PU1968v010n04ABEH003699

2. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 11, 2075-2084, Nov. 1999.
doi:10.1109/22.798002

3. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Loop-wire medium for investigating plasmons at microwave frequency," Phys. Rev. Lett., Vol. 84, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184

4. Yen, T. J., W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science, Vol. 303, No. 5663, 1494-1496, Mar. 2004.
doi:10.1126/science.1094025

5. Baena, J. D., R. Marques, F. Medina, and J. Martel, "Artificial magnetic metamaterial design by using spiral resonators," Phys. Rev. B, Vol. 69, 014402(1)-(5), 2004.

6. Wang, D., L. Ran, H. Chen M. Mu, J. A. Kong, and B. I. Wu, "Experimental validation of negative refraction of metamaterial composed of single side paired S-ring resonators," Appl. Phys. Lett., Vol. 90, 254103(1)-(3), 2007.

7. Wu, B.-I., W.Wang, J. Pacheco, X. Chen, T. M. Grzegorczyk, and J. A. Kong, "A study of using metamaterials as antenna substrate to enhance gain," Progress In Electromagnetics Research, Vol. 51, 295-328, 2005.
doi:10.2528/PIER04070701

8. Sabah, C., "Multi-resonant metamaterial design based on concentric V-shaped magnetic resonators," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 8-9, 1105-1115, 2012.
doi:10.1080/09205071.2012.710537

9. Gu, J. Q., J. G. Han, X. C. Lu, R. Singh, Z. Tian, Q. R. Xing, and W. L. Zhang, "A close-ring pair terahertz metamaterial resonating at normal incidence," Optics Express, Vol. 12, No. 22, 20307-20312, Oct. 2009.

10. Yuan, Y., C. Bingham, T. Tyler, S. Palit, T. H. Hand, and W. J. Padilla, "A dual-resonant terahertz metamaterial based on single-particle electric-field-coupled resonators," Appl. Phys. Lett., Vol. 93, No. 19, 191110, 2008.
doi:10.1063/1.3026171

11. Yuan, Y., C. Bingham, T. Tyler, S. Palit, T. H. Hand, and W. J. Padilla, "Dual-band planar electric metamaterial in terahertz regime," Optics Express, Vol. 16, No. 13, 9746-9752, Jun. 2008.
doi:10.1364/OE.16.009746

12. Ekmekci, E. and G. Turhan-Sayan, "Single loop resonator: Dual-band magnetic metamaterial structure," Electron. Lett., Vol. 46, No. 5, Mar. 2010.
doi:10.1049/el.2010.3027

13. Chen, Z. C., R. Mohsen, Y. D. Gong, T. C. Chong, and M. H. Hong, "Realization of variable three-dimensional terahertz metamaterial tubes for passive resonance tunability," Adv. Mater., Vol. 24, OP143-OP147, 2012.
doi:10.1002/adma.201102786

14. García-Meca, C., R. Ortu~no, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, "Double-negative polarization-independent fishnet metamaterial in the visible spectrum," Opt. Lett., Vol. 34, No. 10, 1603-1605, 2009.
doi:10.1364/OL.34.001603

15. Zhu, B., Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, "Polarization insensitive metamaterial Absorber with wide incident angle," Progress In Electromagnetics Research, Vol. 101, 231-239, 2010.
doi:10.2528/PIER10011110

16. Ziolkowski, R. W., "Design, fabrication, and testing of double negative metamaterials," IEEE Trans. Antennas Propag.,, Vol. 51, No. 7, 1516-1529, 2003.
doi:10.1109/TAP.2003.813622

17. Majid, H. A., M. K. A. Rahim, and T. Masri, "Microstrip antenna's gain enhancement using left-handed metamaterial structure," Progress In Electromagnetics Research M, Vol. 8, 235-247, 2009.
doi:10.2528/PIERM09071301