Vol. 32
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2012-09-05
Wideband Microwave Crossover Using Double Vertical Microstrip-CPW Interconnect
By
Progress In Electromagnetics Research C, Vol. 32, 109-122, 2012
Abstract
The paper presents the design of a novel ultra-wideband microwave crossover for the use in microstrip circuits. The proposed structure includes a double microstrip-coplanar waveguide (CPW) vertical interconnect in single-layer substrate technology which allows an inclusion of a finite-width coplanar waveguide (CPW) on the top side of the substrate to achieve the required cross-link. The presented design is verified using the full-wave electromagnetic simulator Ansoft HFSS v.13 and experimental tests. The obtained experimental results show that in the frequency band of 3.2-11 GHz, the crossover has an isolation of 20 dB accompanied by insertion losses of no more than 1.5 dB.
Citation
Yifan Wang, Amin M. Abbosh, and Bassem Henin, "Wideband Microwave Crossover Using Double Vertical Microstrip-CPW Interconnect," Progress In Electromagnetics Research C, Vol. 32, 109-122, 2012.
doi:10.2528/PIERC12071903
References

1. Chiu, J.-C., J.-M. Lin, M.-P. Houng, and Y.-H. Wang, "A PCB compatible 3-dB coupler using microstrip-to-CPW via-hole transitions," IEEE Microwave and Wireless Components Letters, Vol. 16, No. 6, 369-371, Jun. 2006.
doi:10.1109/LMWC.2006.875592

2. Horng, T., "A rigorous study of microstrip crossovers and their possible improvements," IEEE Trans. Microw. Theory Tech., Vol. 42, No. 9, 1802-1806, Sep. 1994.
doi:10.1109/22.310591

3. Martoglio, L., E. Richalot, G. Lissorgues, and O. Picon, "A wideband 3D-transition between coplanar and inverted microstrip on silicon to characterize a line in MEMS technology," Microwave and Optical Tech. Lett., Vol. 46, No. 4, 378-381, 2005.
doi:10.1002/mop.20992

4. Burke, J. and R. Jackson, "Surface-to-surface transition via electromagnetic coupling of microstrip and coplanar waveguide," IEEE Trans. Microw. Theory Tech., Vol. 37, No. 3, 519-525, Mar. 1989.
doi:10.1109/22.21623

5. Liu, W., Z. Zhang, Z. Feng, and M. F. Iskander, "A Compact wideband microstrip crossover," IEEE Microwave and Wireless Components Letters, Vol. 22, No. 5, 254-256, May 2012.
doi:10.1109/LMWC.2012.2190270

6. Kusiek, A., W. Marynowski, and J. Mazur, "Design of a broadband microstrip crossover for ultra-wideband applications," Microw. Opt. Technol. Lett., Vol. 52, No. 5, 1100-1104, 2010.
doi:10.1002/mop.25146

7. Chiou, Y., J. Kuo, and H. Lee, "Design of compact symmetric four-port crossover junction," IEEE Microwave and Wireless Components Letters, Vol. 19, 545-447, 2009.
doi:10.1109/LMWC.2009.2027054

8. Yao, J., C. Lee, and S. Yeo, "Microstrip branch-line couplers for crossover application," IEEE Trans. Microw. Theory Tech., Vol. 59, 87-92, 2011.
doi:10.1109/TMTT.2010.2090695

9. Wong, F. and K. Cheng, "Octave-wide matched symmetrical, reciprocal, design for dual-band applications," IEEE Trans. Microw. Theory Tech., Vol. 59, 568-573, 2011.
doi:10.1109/TMTT.2010.2098883

10. De Ronde, F. C., "Octave-wide matched symmetrical, reciprocal, 4- and 5 ports," 1982 IEEE MTT-S International Microwave Symposium Digest, 521-523, Jun. 15-17, 1982.

11. Chen, Y. and S. Yeo, "A symmetrical four-port microstrip coupler for crossover application ," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 11, 2434-2438, 2007.
doi:10.1109/TMTT.2007.908675

12. Abbosh, A., "Planar wideband crossover with distortionless response using dual-mode microstrip patch," Microw. Opt. Technol. Lett., Vol. 54, No. 9, 2077-2079, 2012.
doi:10.1002/mop.27028

13. U-yen, K., E. J. Wollack, S. H. Moseley, T. R. Stevenson, W.-T. Hsieh, and N. T. Cao, "Via-less microwave crossover using microstrip-CPW transitions in slotline propagation mode I," 2009 IEEE MTT-S International Microwave Symposium Digest, 1029-1032, 2009.
doi:10.1109/MWSYM.2009.5165875

14. Lin, T.-H., "Via-free broadband microstrip to CPW transition," Electronics Letters, Vol. 37, No. 15, 960-961, Jul. 19, 2001.
doi:10.1049/el:20010674

15. Girard, T., R. Staraj, E. Cambiaggio, and F. Muller, "Microstrip-CPW transitions for antenna array applications," Microw. Opt. Technol. Lett., Vol. 23, No. 3, 131-133, 1999.
doi:10.1002/(SICI)1098-2760(19991105)23:3<131::AID-MOP1>3.0.CO;2-9

16. Jin, H., R. Vahldieck, J. Huang, and P. Russer, "Rigorous analysis of mixed transmission line interconnects using the frequency-domain TLM method," EEE Trans. Microw. Theory Tech., Vol. 41, 2248-2255, 1993.

17. Abbosh, A., "Wideband planar crossover using two-port and four-port microstrip to slotline transitions," IEEE Microwave and Wireless Components Letters, Vol. 22, No. 9, 2012.
doi:10.1109/LMWC.2012.2209632

18. Abbosh, A. M., "Broadband fixed phase shifters," IEEE Microwave and Wireless Components Letters, Vol. 21, No. 1, 22-24, 2011.
doi:10.1109/LMWC.2010.2079320

19. Abbosh, A. M. and M. E. Bialkowski, "Design of compact directional couplers for UWB applications," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 2, 189-194, Feb. 2007.
doi:10.1109/TMTT.2006.889150

20. Abbosh, A. M. and M. E. Bialkowski, "Design of ultra wideband 3DB quadrature microstrip/slot coupler," Microw. Opt. Technol. Lett., Vol. 49, No. 9, 2101-2103, 2007.
doi:10.1002/mop.22674

21. Gupta, K. C., R. Garg, I. Bahl, and P. Bhartia, Microstrip Lines and Slotlines, Artech House, 1996.