Vol. 21

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2011-05-12

Combining Different in-Plane Photonic Wire Lasers and Coupling the Resulting Field into a Single-Mode Waveguide

By Md. Rezaur Raihan, Ziyuan Li, Danyu Liu, Haroldo Hattori, and Malin Premaratne
Progress In Electromagnetics Research C, Vol. 21, 191-203, 2011
doi:10.2528/PIERC10112103

Abstract

Photonic wire lasers are compact light sources that are fabricated in high-index contrast waveguides (with typical widths of a few hundreds of nanometers). Because of their small footprints, they may become a basic laser component in future-generation of optical integrated circuits. Owing to having low optical volume by design, photonic wire lasers can only produce low output power that may not be adequate in many applications. A solution to this problem is to coherently combine the output power of different photonic wire lasers to produce larger output power. In this article, we analyze different ways to combine light coming out from photonic wire lasers and couple the combined power into a single-mode waveguide.

Citation


Md. Rezaur Raihan, Ziyuan Li, Danyu Liu, Haroldo Hattori, and Malin Premaratne, "Combining Different in-Plane Photonic Wire Lasers and Coupling the Resulting Field into a Single-Mode Waveguide," Progress In Electromagnetics Research C, Vol. 21, 191-203, 2011.
doi:10.2528/PIERC10112103
http://jpier.org/PIERC/pier.php?paper=10112103

References


    1. Painter, O., R. K. Lee, A. Scherrer, A. Yariv, J. D. O'Brien, and , "Two-dimensional photonic bandgap defect mode laser ," Science, Vol. 284, 1819-1821, 1999.
    doi:10.1126/science.284.5421.1819

    2. Park, H. G., J. K. Hwang, J. Huh, H. Y. Ryu, S. H. Kim, J. S. Kim, and Y. H. Lee, "Characteristics of modified single-defect two-dimensional photonic crystal lasers," IEEE J. Quantum Electron., Vol. 38, 1353-1365, 2002.
    doi:10.1109/JQE.2002.802951

    3. Song, D. S., S. H. Kim, H. G. Park, C. K. Kim, and Y. H. Lee, "Single-fundamental-mode photonic crystal surface-emitting lasers," Appl. Phys. Lett., Vol. 80, 3608-3610, 2003.

    4. Hattori, H. T., C. Seassal, X. Letartre, P. Rojo-Romeo, J. L. Leclercq, P. Viktorovitch, M. Zussy, L. di Cioccio, L. El Melhaoui, and J. M. Fedeli, "Coupling analysis of heterogeneous integrated InP based photonic crystal triangular lattice band-edge lasers and silicon waveguides ," Opt. Express, Vol. 13, 3310-3322, 2005.
    doi:10.1364/OPEX.13.003310

    5. Amaratunga, V. S., H. T. Hattori, M. Premaratne, H. H. Tan, and C. Jagadish, "Photonic crystal phase detector," J. Opt. Soc. Am. B, Vol. 25, 1532-1536, 2008.
    doi:10.1364/JOSAB.25.001532

    6. Matsumoto, T. and T. Baba, "Photonic crystal k-vector super-prism," J. Lightwave Technol., Vol. 22, 917-922, 2004.
    doi:10.1109/JLT.2004.824537

    7. Ohnishi, D., T. Okano, M. Imada, and S. Noda, "Room temperature continuous wave operation of a surface-emitting two-dimensional photonic crystal diode laser," Opt. Express, Vol. 12, 1562-1568, 2004.
    doi:10.1364/OPEX.12.001562

    8. Fujita, M., A. Sakai, and T. Baba, "Ultra-small and ultra-low threshold microdisk injection laser-design, fabrication, lasing characteristics and spontaneous emission factor," IEEE J. Sel. Top. Quantum Electron., Vol. 5, 673-681, 1999.
    doi:10.1109/2944.788434

    9. Boriskina, S. V., T. M. Benson, P. D. Sewell, and A. I. Nosich, "Directional emission, increased free spectral range, and mode Q-factors in 2-D wavelength-scale optical microcavity structures," IEEE J. Sel. Top. Quantum Electron., Vol. 12, 1175-1182, 2006.
    doi:10.1109/JSTQE.2006.882662

    10. Hattori, H. T., "Analysis of optically pumped equilateral triangular microlasers with three mode-selective trenches," Appl. Optics, Vol. 47, 2178-2185, 2008.
    doi:10.1364/AO.47.002178

    11. Hattori, H. T., D. Y. Liu, H. H. Tan, and C. Jagadish, "Large square resonator laser with quasi-single-mode operation," IEEE Phot. Technol. Lett., Vol. 21, 359-361, 2005.
    doi:10.1109/LPT.2008.2011921

    12. Genet, C. and T. W. Ebbesen, "Light in tiny holes," Nature, Vol. 445, 39-46, 2007.
    doi:10.1038/nature05350

    13. Laux, E., C. Genet, T. Skauli, and T. W. Ebbesen, "Plasmonic photon sorters for spectral and polarimetric imaging," Nature Phot., Vol. 2, 161, 2008.
    doi:10.1038/nphoton.2008.1

    14. Yu, N., E. Cubukcu, L. Diehl, M. A. Belkin, K. B. Crozier, F. Capasso, D. Bour, S. Corzine, and G. Hofler, "Plasmonic quantum cascade laser antenna," Appl. Phys. Lett., Vol. 91, 173113, 2007.
    doi:10.1063/1.2801551

    15. Liu, D. Y., H. T. Hattori, L. Fu, H. H. Tan, and C. Jagadish, "Coupling analysis of GaAs-based microdisk lasers with different external claddings," J. Lightwave Technol., Vol. 27, 5090-5098, 2009.
    doi:10.1109/JLT.2009.2028161

    16. Hattori, H. T., Z. Li, D. Y. Liu, I. D. Rukhlenko, and M. Premaratne, "Coupling of light from microdisk lasers into plasmonic nano-antennas," Opt. Express, Vol. 17, 20878-20884, 2009.
    doi:10.1364/OE.17.020878

    17. Bogaerts, W., D. Tailaert, B. Luyssaert, P. Dumon, J. Van Campehout, P. Bientsman, D. Van Thourhout, R. Baets, V. Wiaux, and S. Beckx, "Basic structures for photonic integrated circuits in silicon-on-insulator," Opt. Express, Vol. 12, 1583-1591, 2004.
    doi:10.1364/OPEX.12.001583

    18. Zain, A. R., N. P. Johnson, M. Sorel, and R. M. De La Rue, "High quality-factor 1-D-suspended photonic crystal/photonic wire silicon waveguide micro-cavities," IEEE Phot. Technol. Lett., Vol. 21, 1789-1791, 2009.
    doi:10.1109/LPT.2009.2033712

    19. Homeyer, E., J. Houel, X. Checoury, G. Fishman, S. Sauvage, and P. Boucaud, "Thermal emission of midinfrared GaAs photonic crystal ," Phys. Rev. B, Vol. 78, 165305, 2008.
    doi:10.1103/PhysRevB.78.165305

    20. Hascik, S., I. Hotovy, T. Lalinsky, G. Vanko, V. Rehacek, and Z. Mozolova, "Preparation of thin GaAs suspended membranes for gas micro-sensors using plasma etching," Vacuum, Vol. 82, 236-239, 2008.
    doi:10.1016/j.vacuum.2007.07.011

    21., Fullwave 4.0 RSOFT design group, http://www.rsoftdesign.com, 1999.

    22. Henry, C., N. Olsson, and N. Dutta, "Locking range and stability of injection locked 1.54 μm InGaAsPSemiconductor lasers," IEEE Journal of Quantum Electronics, Vol. 21, 1152-1156, 1985.
    doi:10.1109/JQE.1985.1072787

    23. Murakami, A., K. Kawashima, and K. Atsuki, "Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection ," IEEE Journal of Quantum Electronics, Vol. 39, 1196-1204, 2003.
    doi:10.1109/JQE.2003.817583

    24. Lau, E. K., S. Hyuk-Kee, and M. C. Wu, "Frequency response enhancement of optical injection-locked lasers," IEEE Journal of Quantum Electronics, Vol. 44, 90-99, 2008.
    doi:10.1109/JQE.2007.910450