Vol. 8

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Microwave Absorption, Conductivity and Complex Pemittivity of Fritless Ni(1-X)Cuxmn2o4 (0≤X≤1) Ceramic Thick Film:Effect of Copper

By Rupali N. Jadhav and Vijaya Puri
Progress In Electromagnetics Research C, Vol. 8, 149-160, 2009


The effect of copper on the microwave absorption, conductivity and complex permittivity of fritless Ni(1-x)CuxMn2O4 (x=0,0.4,0.8,1) thick film on alumina have been investigated in the 8-18 GHz frequency range. The structural changes have been identified by scanning electron microscope (SEM), FTIR and RAMAN scattering spectroscopy. The microwave conductivity and permittivity increase as copper content increases. The fritless Ni(1-x)CuxMn2O4 (0≤x≤1) thick film with x=0.4 shows best absorption properties, though all the other compositions also show good absorption in a large frequency range. The microwave conductivity increases from 1S/cm to 951 S/cm due to copper and the dielectric constant (ε) increases from 7 to 19.5.


Rupali N. Jadhav and Vijaya Puri, "Microwave Absorption, Conductivity and Complex Pemittivity of Fritless Ni(1-X)Cuxmn2o4 (0≤X≤1) Ceramic Thick Film:Effect of Copper," Progress In Electromagnetics Research C, Vol. 8, 149-160, 2009.


    1. Chamaani, S., S. A. Mirtaheri, M. Teshnehlab, M. A. Shoorehdeli, and V. Seydi, "Modified multi-objective particle swarm optimization for electromagnetic absorber design," Progress In Electromagnetics Research, Vol. 79, 353-366, 2008.

    2. Abbas, S. M., A. K. Dixit, R. Chatterjee, and T. C. Goel, "Complex permittivity and microwave absorption properties of BaTiO3-polyaniline composite," Materials Science and Engineering B, Vol. 125, 167-171, 2005.

    3. Zhang, Y. C., Z. X. Yue, X. Qi, B. Li, Z. L. Gui, and L. T. Li, "Microwave dielectric properties of Zn(Nb(1-x)Tax)2O6ceramics," Materials Letters, Vol. 58, 1392-1395, 2004.

    4. Chou, Y.-H., M.-J. Jeng, Y.-H. Lee, and Y.-G. Jan, "Measurement of RF PCB dielectric properties and losses," Progress In Electromagnetics Research Letters, Vol. 4, 139-148, 2008.

    5. He, X., Z. X. Tang, B. Zhang, and Y. Q.Wu, "A new deembedding method in permittivity measurement of ferroelectric thin film material," Progress In Electromagnetics Research Letters, Vol. 3, 1-8, 2008.

    6. Marie, M., J. Mazzochette, A. H. Feingold, P. Amstutz, R. L. Wahlers, C. Huang, and S. J. Stein, "Thick film variable temperature variable attenuators," Proceeding of the 1997 IMPS Philadelphia Symposium, Vol. 3235, 344-349, 1997.

    7. Savic, S. M., M. V. Nikolic, O. S. Aleksic, M. Slankamenac, M. Zivanov, and P. M. Nikolic, "Intrinsic resistivity of sintered nickel manganite vs. powder activation time and density," Science of Sintering, Vol. 40, 27-32, 2008.

    8. Verses, A., J. G. Noudem, O. Pery, S. Founez, and G. Bailleul, "Manganese based spinel --- Like ceramics with NTC --- Type thermistor behavior," Solid State Ionics, Vol. 178, 423-428, 2007.

    9. Park, K., "Structural and electrical properties of FeMg0.7Cr0.7-xAlxO4 (0≤y≤0.3) thick film NTC thermistors," Journal of European Ceramic Society, Vol. 256, 909-914, 2006.

    10. Kanade, S. A. and V. Puri, "Properties of thick film Ni0.6Co0.4FeyMn2-yO4: (0≤y≤0.5) NTC ceramics," Journal of Alloys and Compounds, Vol. 475, 352-355, 2009.

    11. Pi, L., X. Xu, and Y. Zhang, "Anomalous transport properties of heavily doped polycrystalline La0.825Sr0.175Mn1-xCuxO3," Physical Review B, Vol. 62, 5667-5672, 2000.

    12. Julien, C., M. Massot, S. Rangan, M. Lemal, and D. Guyomard, "Study of structural defects in -MnO2 by Raman spectroscopy," Journal of Raman Spectroscopy, Vol. 33, 223-228, 2002.

    13. Chitra, S., P. Kalyani, T. Mohan, M. Massot, S. Ziolkiewicz, R. Ganandharan, M. Eddrief, and C. Julien, "Physical properties of LiMn2O4 spinel prepared at moderate temperature," Ionics, Vol. 4, 8-15, 1998.

    14. Dokko, K., M. Mohamed, N. Anzue, T. Itoh, and I. Uchida, "In situ Raman apectroscopic studies of LiNixMn2-xO4 thin film cathod materials for lithium ion secondary batteries," Journal of Materials Chemistry, Vol. 12, 3688-3693, 2002.

    15. Li, W. J., B. Zang, and W. Lu, "Structural properties and Raman spectroscopy of La(2+4x)/3Mn1-xCuxO3 (0≤x≤0.2)," Physics Letters A, Vol. 362, 327-330, 2007.

    16. Dimri, M., A. Verma, S. Kashyap, D. Dube, O. Thakur, and C. Prakash, "Structural, dielctric and magnetic properties of NiCuZn ferrite grown by citrate precursour mehod," Materials Science and Engineering B, Vol. 133, 42-48, 2006.

    17. Li, G., G. G. Hu, H. D. Zhou, X. J. Fan, and X. G. Li, "Absorption of microwaves in La1-xSrxMnO3 manganese powders over a wide bandwidth," Journal of Applied Physics, Vol. 90, 5512-5514, 2001.

    18. Ramey, R. and T. Lewis, "Properties of thin metal films at microwave frequencies," Journal of Applied Physics, Vol. 39, 1747-1752, 1968.

    19. Kim, J. H., K. B. Kim, and S. H. Noh, "New density independent model for measurement of grain moisture content using microwave techniques," Journal of Electronics Engineering and Information Science, Vol. 2, 72-78, 1997.

    20. Zaki, H. M., "AC conductivity and frequency dependence of the dielctric properties for copper doped magnetite," Physica B, Vol. 363, 232-244, 2005.