Vol. 8

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2009-07-01

Microwave Absorption, Conductivity and Complex Pemittivity of Fritless Ni(1-X)Cuxmn2o4 (0≤X≤1) Ceramic Thick Film:Effect of Copper

By Rupali N. Jadhav and Vijaya Puri
Progress In Electromagnetics Research C, Vol. 8, 149-160, 2009
doi:10.2528/PIERC09052502

Abstract

The effect of copper on the microwave absorption, conductivity and complex permittivity of fritless Ni(1-x)CuxMn2O4 (x=0,0.4,0.8,1) thick film on alumina have been investigated in the 8-18 GHz frequency range. The structural changes have been identified by scanning electron microscope (SEM), FTIR and RAMAN scattering spectroscopy. The microwave conductivity and permittivity increase as copper content increases. The fritless Ni(1-x)CuxMn2O4 (0≤x≤1) thick film with x=0.4 shows best absorption properties, though all the other compositions also show good absorption in a large frequency range. The microwave conductivity increases from 1S/cm to 951 S/cm due to copper and the dielectric constant (ε) increases from 7 to 19.5.

Citation


Rupali N. Jadhav and Vijaya Puri, "Microwave Absorption, Conductivity and Complex Pemittivity of Fritless Ni(1-X)Cuxmn2o4 (0≤X≤1) Ceramic Thick Film:Effect of Copper," Progress In Electromagnetics Research C, Vol. 8, 149-160, 2009.
doi:10.2528/PIERC09052502
http://jpier.org/PIERC/pier.php?paper=09052502

References


    1. Chamaani, S., S. A. Mirtaheri, M. Teshnehlab, M. A. Shoorehdeli, and V. Seydi, "Modified multi-objective particle swarm optimization for electromagnetic absorber design," Progress In Electromagnetics Research, Vol. 79, 353-366, 2008.
    doi:10.2528/PIER07101702

    2. Abbas, S. M., A. K. Dixit, R. Chatterjee, and T. C. Goel, "Complex permittivity and microwave absorption properties of BaTiO3-polyaniline composite," Materials Science and Engineering B, Vol. 125, 167-171, 2005.
    doi:10.1016/j.mseb.2005.07.018

    3. Zhang, Y. C., Z. X. Yue, X. Qi, B. Li, Z. L. Gui, and L. T. Li, "Microwave dielectric properties of Zn(Nb(1-x)Tax)2O6ceramics," Materials Letters, Vol. 58, 1392-1395, 2004.
    doi:10.1016/j.matlet.2003.09.034

    4. Chou, Y.-H., M.-J. Jeng, Y.-H. Lee, and Y.-G. Jan, "Measurement of RF PCB dielectric properties and losses," Progress In Electromagnetics Research Letters, Vol. 4, 139-148, 2008.
    doi:10.2528/PIERL08072403

    5. He, X., Z. X. Tang, B. Zhang, and Y. Q.Wu, "A new deembedding method in permittivity measurement of ferroelectric thin film material," Progress In Electromagnetics Research Letters, Vol. 3, 1-8, 2008.
    doi:10.2528/PIERL08011501

    6. Marie, M., J. Mazzochette, A. H. Feingold, P. Amstutz, R. L. Wahlers, C. Huang, and S. J. Stein, "Thick film variable temperature variable attenuators," Proceeding of the 1997 IMPS Philadelphia Symposium, Vol. 3235, 344-349, 1997.

    7. Savic, S. M., M. V. Nikolic, O. S. Aleksic, M. Slankamenac, M. Zivanov, and P. M. Nikolic, "Intrinsic resistivity of sintered nickel manganite vs. powder activation time and density," Science of Sintering, Vol. 40, 27-32, 2008.
    doi:10.2298/SOS0801027S

    8. Verses, A., J. G. Noudem, O. Pery, S. Founez, and G. Bailleul, "Manganese based spinel --- Like ceramics with NTC --- Type thermistor behavior," Solid State Ionics, Vol. 178, 423-428, 2007.
    doi:10.1016/j.ssi.2007.01.028

    9. Park, K., "Structural and electrical properties of FeMg0.7Cr0.7-xAlxO4 (0≤y≤0.3) thick film NTC thermistors," Journal of European Ceramic Society, Vol. 256, 909-914, 2006.
    doi:10.1016/j.jeurceramsoc.2004.12.021

    10. Kanade, S. A. and V. Puri, "Properties of thick film Ni0.6Co0.4FeyMn2-yO4: (0≤y≤0.5) NTC ceramics," Journal of Alloys and Compounds, Vol. 475, 352-355, 2009.
    doi:10.1016/j.jallcom.2008.07.022

    11. Pi, L., X. Xu, and Y. Zhang, "Anomalous transport properties of heavily doped polycrystalline La0.825Sr0.175Mn1-xCuxO3," Physical Review B, Vol. 62, 5667-5672, 2000.
    doi:10.1103/PhysRevB.62.5667

    12. Julien, C., M. Massot, S. Rangan, M. Lemal, and D. Guyomard, "Study of structural defects in -MnO2 by Raman spectroscopy," Journal of Raman Spectroscopy, Vol. 33, 223-228, 2002.
    doi:10.1002/jrs.838

    13. Chitra, S., P. Kalyani, T. Mohan, M. Massot, S. Ziolkiewicz, R. Ganandharan, M. Eddrief, and C. Julien, "Physical properties of LiMn2O4 spinel prepared at moderate temperature," Ionics, Vol. 4, 8-15, 1998.
    doi:10.1007/BF02375774

    14. Dokko, K., M. Mohamed, N. Anzue, T. Itoh, and I. Uchida, "In situ Raman apectroscopic studies of LiNixMn2-xO4 thin film cathod materials for lithium ion secondary batteries," Journal of Materials Chemistry, Vol. 12, 3688-3693, 2002.
    doi:10.1039/b206764a

    15. Li, W. J., B. Zang, and W. Lu, "Structural properties and Raman spectroscopy of La(2+4x)/3Mn1-xCuxO3 (0≤x≤0.2)," Physics Letters A, Vol. 362, 327-330, 2007.
    doi:10.1016/j.physleta.2006.10.021

    16. Dimri, M., A. Verma, S. Kashyap, D. Dube, O. Thakur, and C. Prakash, "Structural, dielctric and magnetic properties of NiCuZn ferrite grown by citrate precursour mehod," Materials Science and Engineering B, Vol. 133, 42-48, 2006.
    doi:10.1016/j.mseb.2006.04.043

    17. Li, G., G. G. Hu, H. D. Zhou, X. J. Fan, and X. G. Li, "Absorption of microwaves in La1-xSrxMnO3 manganese powders over a wide bandwidth," Journal of Applied Physics, Vol. 90, 5512-5514, 2001.
    doi:10.1063/1.1415053

    18. Ramey, R. and T. Lewis, "Properties of thin metal films at microwave frequencies," Journal of Applied Physics, Vol. 39, 1747-1752, 1968.
    doi:10.1063/1.1656424

    19. Kim, J. H., K. B. Kim, and S. H. Noh, "New density independent model for measurement of grain moisture content using microwave techniques," Journal of Electronics Engineering and Information Science, Vol. 2, 72-78, 1997.

    20. Zaki, H. M., "AC conductivity and frequency dependence of the dielctric properties for copper doped magnetite," Physica B, Vol. 363, 232-244, 2005.
    doi:10.1016/j.physb.2005.03.026