Vol. 98
Latest Volume
All Volumes
PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2019-12-23
Mask-Constrained Power Synthesis of Large and Arbitrary Arraysas a Few-Samples Global Optimization
By
Progress In Electromagnetics Research C, Vol. 98, 69-81, 2020
Abstract
With reference to the mask-constrained power synthesis of shaped beams through fixed-geometry antenna arrays, we elaborate a recently proposed approach and introduce an innovative effective technique. In particular, the proposed formulation, which can take into account mutual coupling and mounting platform effects, relieson a nested optimization where the external global optimization acts on the field's phase shifts over a minimal number of `control points' located into the target region whereas the internal optimization acts instead on excitations. As the internal optimization of the ripple is shown to result in a Convex Programming problem and the external optimization deals with a reduced number of unknowns, a full control of the shaped beam's ripple and sidelobe level is achieved even in the case of arrays having a large size and aimed at generating large-footprint patterns. Examples involving comparisons with benchmark approaches as well as full-wave simulated realistic antennas are provided.
Citation
Giada Maria Battaglia, Andrea Francesco Morabito, Gino Sorbello, and Tommaso Isernia, "Mask-Constrained Power Synthesis of Large and Arbitrary Arraysas a Few-Samples Global Optimization," Progress In Electromagnetics Research C, Vol. 98, 69-81, 2020.
doi:10.2528/PIERC19082904
References

1. Morabito, A. F., A. R. Laganà, and L. Di Donato, "Satellite multibeam coverage of earth: Innovative solutions and optimal synthesis of aperture fields," Progress In Electromagnetics Research, Vol. 156, 135-144, 2016.
doi:10.2528/PIER16061505

2. Mosalanejad, M., S. Brebels, C. Soens, I. Ocket, and G. A. E. Vandenbosch, "Millimeter wave cavity backed microstrip antenna array for 79 GHz radar applications," Progress In Electromagnetics Research, Vol. 158, 89-98, 2017.
doi:10.2528/PIER17010407

3. Dessouky, M. I., H. A. Sharshar, and Y. A. Albagory, "Design of high altitude platforms cellular communications," Progress In Electromagnetics Research, Vol. 67, 251-261, 2007.
doi:10.2528/PIER06092501

4. Iero, D. A. M., T. Isernia, A. F. Morabito, I. Catapano, and L. Crocco, "Optimal constrained field focusing for hyperthermia cancer therapy: A feasibility assessment on realistic phantoms," Progress In Electromagnetics Research, Vol. 102, 125-141, 2010.
doi:10.2528/PIER10011207

5. Morabito, A. F., "Synthesis of maximum-efficiency beam arrays via convex programming and compressive sensing," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2404-2407, 2017.
doi:10.1109/LAWP.2017.2721218

6. Isernia, T. and A. F. Morabito, "Mask-constrained power synthesis of linear arrays with even excitations ," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 7, 3212-3217, 2016.
doi:10.1109/TAP.2016.2556712

7. Isernia, T. and G. Panariello, "Optimal focusing of scalar fields subject to arbitrary upper bounds," Electronics Letters, Vol. 34, No. 2, 162-164, 1998.
doi:10.1049/el:19980212

8. Bucci, O. M., M. D’Urso, and T. Isernia, "Optimal synthesis of difference patterns subject to arbitrary sidelobe bounds by using arbitrary array antennas," IEE Proceedings on Microwaves, Antennas and Propagation, Vol. 152, No. 3, 129-137, 2005.
doi:10.1049/ip-map:20045073

9. Oliveri, G. and L. Poli, "Optimal sub-arraying of compromise planar arrays through an innovative ACO-weighted procedure," Progress In Electromagnetics Research, Vol. 109, 279-299, 2010.
doi:10.2528/PIER10092008

10. Morabito, A. F. and P. Rocca, "Reducing the number of elements in phase-only reconfigurable arrays generating sum and difference patterns," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1338-1341, 2015.
doi:10.1109/LAWP.2015.2404939

11. Orchard, H. J., R. S. Elliott, and G. J. Stern, "Optimizing the synthesis of shaped beam antenna patterns," IEE Proceedings H --- Microwaves, Antennas and Propagation, Vol. 132, No. 1, 63-68, 1985.
doi:10.1049/ip-h-2.1985.0013

12. Zhang, T. and W. Ser, "Robust beampattern synthesis for antenna arrays with mutual coupling effect," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 8, 2889-2895, 2011.
doi:10.1109/TAP.2011.2152329

13. Woodward, P. and J. Lawson, "The theoretical precision with which an arbitrary radiation-pattern may be obtained from a source of finite size," Journal of the Institution of Electrical Engineers --- Part III: Radio and Communication Engineering, Vol. 95, No. 37, 363-370, 1948.
doi:10.1049/ji-3-2.1948.0094

14. Isernia, T., O. M. Bucci, and N. Fiorentino, "Shaped beam antenna synthesis problems: Feasibility criteria and new strategies," Journal of Electromagnetic Waves and Applications, Vol. 12, No. 1, 103-137, 1998.
doi:10.1163/156939398X00098

15. Morabito, A. F., T. Isernia, and L. Di Donato, "Optimal synthesis of phase-only reconfigurable linear sparse arrays having uniform-amplitude excitations," Progress In Electromagnetics Research, Vol. 124, 405-423, 2012.
doi:10.2528/PIER11112210

16. Morabito, A. F., A. Massa, P. Rocca, and T. Isernia, "An effective approach to the synthesis of phase-only reconfigurable linear arrays," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 8, 3622-3631, 2012.
doi:10.1109/TAP.2012.2201099

17. Bucci, O. M., T. Isernia, and A. F. Morabito, "Optimal synthesis of circularly symmetric shaped beams," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 4, 1954-1964, 2014.
doi:10.1109/TAP.2014.2302842

18. Morabito, A. F., T. Isernia, and A. R. Laganà, "On the optimal synthesis of ring symmetric shaped patterns by means of uniformly spaced planar arrays," Progress In Electromagnetics Research B, Vol. 20, 33-48, 2010.
doi:10.2528/PIERB10011206

19. Mahanti, G. K., A. Chakraborty, and S. Das, "Phase-only and amplitude-phase only synthesis of dual-beam pattern linear antenna arrays using floating-point genetic algorithms," Progress In Electromagnetics Research, Vol. 68, 247-259, 2007.
doi:10.2528/PIER06072301

20. Wang, W.-B., Q. Feng, and D. Liu, "Application of chaotic particle swarm optimization algorithm to pattern synthesis of antenna arrays," Progress In Electromagnetics Research, Vol. 115, 173-189, 2011.
doi:10.2528/PIER11012305

21. Liu, D., Q. Feng, W.-B. Wang, and X. Yu, "Synthesis of unequally spaced antenna arrays by using inheritance learning particle swarm optimization," Progress In Electromagnetics Research, Vol. 118, 205-221, 2011.
doi:10.2528/PIER11050502

22. Bucci, O. M., T. Isernia, A.F. Morabito, S. Perna, and D. Pinchera, "Aperiodic arrays for space applications: An effective strategy for the overall design," Proceedings of the 3rd European Conference on Antennas and Propagation, EuCAP 2009, 2031-2035, Berlin, Germany, March 23-27, 2009.

23. Floudas, C. A. and P. M. Pardalos, State of the Art in Global Optimization: Computational Methods and Applications, IX, Kluwer Acad. Publ., New York, Dordrecht, 1996.
doi:10.1007/978-1-4613-3437-8

24. Battaglia, G. M., G. G. Bellizzi, A. F. Morabito, G. Sorbello, and T. Isernia, "A general effective approach to the synthesis of shaped beams for arbitrary fixed-geometry arrays," Journal of Electromagnetic Waves and Applications, Vol. 33, No. 18, 2404-2422, 2019.
doi:10.1080/09205071.2019.1683472

25. Morabito, A. F., L. Di Donato, and T. Isernia, "Orbital angular momentum antennas: Understanding actual possibilities through the aperture antennas theory," IEEE Antennas and Propagation Magazine, Vol. 60, No. 2, 59-67, 2018.
doi:10.1109/MAP.2018.2796445

26. Bucci, O. M., C. Gennarelli, and C. Savarese, "Representation of electromagnetic fields over arbitrary surfaces by a finite and nonredundant number of samples," IEEE Transactions on Antennas and Propagation, Vol. 46, No. 3, 351-359, 1998.
doi:10.1109/8.662654

27. Morabito, A. F., A. Di Carlo, L. Di Donato, T. Isernia, and G. Sorbello, "Extending spectral factorization to array pattern synthesis including sparseness, mutual coupling, and mounting platform effects," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 7, 4548-4559, 2019.
doi:10.1109/TAP.2019.2905977

28. Bucci, O. M. and G. Di Massa, "The truncation error in the application of sampling series to electromagnetic problems," IEEE Transactions on Antennas and Propagation, Vol. 36, No. 7, 941-949, July 1988.
doi:10.1109/8.7199

29. Rodriguez, A., R. Munoz, H. Estevez, F. Ares, and E. Moreno, "Synthesis of planar arrays with arbitrary geometry generating arbitrary footprint patterns," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 9, 2484-2488, 2004.
doi:10.1109/TAP.2004.834125

30. Qi, Y. X. and J. Y. Li, "Superposition synthesis method for 2-D shaped-beam array antenna," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 12, 6950-6957, 2018.
doi:10.1109/TAP.2018.2871712

31. Fuchs, B., L. Le Coq, and M. D. Migliore, "Fast antenna array diagnosis from a small number of far-field measurements," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 6, 2227-2235, 2016.
doi:10.1109/TAP.2016.2547023

32. Palmeri, R., T. Isernia, and A. F. Morabito, "Diagnosis of planar arrays through phaseless measurements and sparsity promotion," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 6, 1273-1277, 2019.
doi:10.1109/LAWP.2019.2914529