Vol. 138
Latest Volume
All Volumes
PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-10-17
A Conformal Wearable Antenna Based on Artificial Magnetic Conductor for GPS Applications
By
Progress In Electromagnetics Research C, Vol. 138, 131-144, 2023
Abstract
In order to improve the efficiency and safety of emergency rescue operations, a wearable circularly polarized (CP) antenna suitable for GPS applications has been designed. It adopts a coplanar waveguide (CPW) feed structure, where the ground plane and radiation patch form an annular gap. The impedance bandwidth and axial ratio performance are enhanced by adjusting the amplitude and phase difference of the current distribution through two pairs of notches and open-circuit branches. When the single antenna is more than 20 millimeters away from the human body model, its CP radiation performance is acceptable, and the peak Specific Absorption Rate (SAR) also meets the required standards. To minimize the separation distance between the antenna and the human body, a 2×2 Artificial Magnetic Conductor (AMC) with in-phase reflection characteristics is integrated at the antenna's bottom as a reflector, which increases the antenna gain and reduces the SAR. Simulation and test results indicate that in the GPS L1 frequency band, the antenna achieves a gain greater than 7 dBi, an axial ratio less than 2 dB, a front-to-back ratio of 24 dB, and a peak SAR of 0.53 W/Kg, which is well below the standard limit of 1.6 W/Kg set by the Federal Communications Commission (FCC). Compared with other relevant antennas, this antenna features compact size, wide impedance bandwidth, and robust anti-interference capability, effectively improving the flexibility and compatibility of the wearable antenna, thereby meeting the demand for efficient and reliable positioning of rescuers.
Citation
Shuqi Wang, and Yuqin Shi, "A Conformal Wearable Antenna Based on Artificial Magnetic Conductor for GPS Applications," Progress In Electromagnetics Research C, Vol. 138, 131-144, 2023.
doi:10.2528/PIERC23080804
References

1. Das, S., H. Islam, and T. Bose, "Compact low-profile body worn and wrist worn lightweight antenna for ISM and GPS band navigation and medical applications," Microwave and Optical Technology Letters, Vol. 60, No. 9, 2122-2127, 2018.
doi:10.1002/mop.31306

2. Ali, U., S. Ullah, B. Kamal, et al. "Design, analysis and applications of wearable antennas: A review," IEEE Access, 2023.

3. Alkhamis, R., J. Wigle, and H. Song, "Global positioning system and distress signal frequency wrist wearable dual-band antenna," Microwave and Optical Technology Letters, Vol. 59, No. 8, 2057-2064, 2017.
doi:10.1002/mop.30673

4. Chaouche, Y. B., M. Nedil, I. B. Mabrouk, et al. "A wearable circularly polarized antenna backed by AMC reflector for WBAN communications," IEEE Access, Vol. 10, 12838-12852, 2022.
doi:10.1109/ACCESS.2022.3146386

5. Chen, P., D. Wang, and Z. Gan, "Flexible and small textile antenna for UWB wireless body area network," Micromachines, Vol. 14, No. 4, 718, 2023.
doi:10.3390/mi14040718

6. Li, H., J. Du, X. X. Yang, et al. "Low-profile all-textile multiband microstrip circular patch antenna for WBAN applications," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 4, 779-783, 2022.
doi:10.1109/LAWP.2022.3146435

7. Gao, G. P., C. Yang, B. Hu, et al. "A wide-bandwidth wearable all-textile PIFA with dual resonance modes for 5 GHz WLAN applications," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 6, 4206-4211, 2019.
doi:10.1109/TAP.2019.2905976

8. Banafaa, M. K., M. H. Jamaluddin, S. H. Dahlan, et al. "Miniature dual band button antenna using cylindrical dielectric resonator antenna for on/off body communication devices," The Applied Computational Electromagnetics Society Journal (ACES), 479-485, 2021.
doi:10.47037/2020.ACES.J.360415

9. Magdalena, Y., R. Anwar, Y. Wahyu, et al. "Performance comparison of cotton and silk substrates on 1.575 GHz frequency textile antenna," Elektronika Ir Elektrotechnika, Vol. 27, No. 5, 26-33, 2021.
doi:10.5755/j02.eie.27321

10. Poffelie, L. A. Y., P. J. Soh, S. Yan, et al. "A high-fidelity all-textile UWB antenna with low back radiation for off-body WBAN applications," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 2, 757-760, 2015.
doi:10.1109/TAP.2015.2510035

11. Yin, B., J. Gu, X. Feng, et al. "A low SAR value wearable antenna for wireless body area network based on AMC structure," Progress In Electromagnetics Research C, Vol. 95, 119-129, 2019.
doi:10.2528/PIERC19040103

12. El Atrash, M., M. A. Abdalla, and H. M. Elhennawy, "A wearable dual-band low profile high gain low SAR antenna AMC-backed for WBAN applications," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 10, 6378-6388, 2019.
doi:10.1109/TAP.2019.2923058

13. Park, M., W. Lee, and T. Son, "Composite GPS patch antenna for the AR bandwidth enhancement," International Journal of Antennas and Propagation, Vol. 2016, 2016.

14. Guo, L., P. Zhang, F. Zeng, et al. "A novel four-arm planar spiral antenna for GNSS application," IEEE Access, Vol. 9, 168899-168906, 2021.
doi:10.1109/ACCESS.2021.3133663

15. Joler, M. and M. Boljkovac, "A sleeve-badge circularly polarized textile antenna," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 3, 1576-1579, 2018.
doi:10.1109/TAP.2018.2794420

16. Dierck, A., H. Rogier, and F. Declercq, "A wearable active antenna for global positioning system and satellite phone," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 2, 532-538, 2012.
doi:10.1109/TAP.2012.2223441

17. Lee, H., J. Tak, and J. Choi, "Wearable antenna integrated into military berets for indoor/outdoor positioning system," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1919-1922, 2017.
doi:10.1109/LAWP.2017.2688400

18. Pawase, T., A. Malhotra, and A. Mahajan, "Compact hybrid EBG microstrip antenna for wearable applications," Frequenz, 2023.

19. Chen, Y. S. and T. Y. Ku, "A low-profile wearable antenna using a miniature high impedance surface for smartwatch applications," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1144-1147, 2015.

20. Sasaki, K., E. Porter, E. A. Rashed, et al. "Measurement and image-based estimation of dielectric properties of biological tissues --- past, present, and future," Physics in Medicine & Biology, Vol. 67, No. 14, 14TR01, 2022.
doi:10.1088/1361-6560/ac7b64