Vol. 138
Latest Volume
All Volumes
PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-11-14
Coaxial PIN-Fed Multiband Fractal Square Antenna for Satellite Applications
By
Progress In Electromagnetics Research C, Vol. 138, 247-259, 2023
Abstract
A coaxially pin-fed multiband fractal square antenna is proposed in this paper. The designed antenna resonates in five bands: 5 GHz, 10 GHz, 13.2 GHz, 16 GHz, and 20.5 GHz. This multibands are achieved by using a fractal square antenna. The fractal square is formed from an initial square patch and then optimized with increasing fractal iterations to resonate at these bands. The fractal property of the design also helps in the miniaturisation of the antenna. The proposed antenna has gain ranging from 4.9 dB to 9.7 dB and radiation efficiencies from 70% to 98%. The proposed antenna is simulated using the CST microwave studio. The antenna is then fabricated, and its performance parameters are measured. After finding a match between simulated and measured results, the same antenna and its array are tested in a MATLAB simulation environment for direction of arrival (DOA) and adaptive beam forming (AB) at all five bands. Using different DOA and AB algorithms, the performance of the antenna array is evaluated. The ability to accurately estimate the DOA of all signals delivered to the adaptive array antenna allows it to maximise its performance in terms of recovering the required transmitted signal and suppressing any interference signal. Then, the beam of the antenna is modified using the DOA algorithm to generate a beam in the desired direction and nulls in the unwanted direction for proposed satellite communications.
Citation
Varnikha Nanthagopal, and Jothilakshmi Paramasivam, "Coaxial PIN-Fed Multiband Fractal Square Antenna for Satellite Applications," Progress In Electromagnetics Research C, Vol. 138, 247-259, 2023.
doi:10.2528/PIERC23062201
References

1. Chun, D., "Overcoming C-band satellite interference," Microwave Product Digest, Oct. 2017.

2. "Consultation paper on assignment of spectrum for space-based communication services,", Telecom Regulatory Authority of India, Apr. 2023.

3. Maval, G. and M. Bousquet, Satellite Communications Systems, John Wiley & Sons, 2020.

4. Rajmohan, I. J. and M. I. Hussein, "A compact multiband planar antenna using modified L-shape resonator slots," Heliyon, Vol. 6, No. 10, e05288, ISSN 2405-8440, 2020.
doi:10.1016/j.heliyon.2020.e05288

5. Prasad, B. S. H. and M. V. Prasad, "Design and analysis of compact periodic slot multiband antenna with defected ground structure for wireless applications," Progress In Electromagnetics Research M, Vol. 93, 77-87, 2020.
doi:10.2528/PIERM20032605

6. Yan, N., K. Ma, H. Zhang, and P. Jia, "An SISL tripleband multimode stacked-patch antenna with L-strips for multiband applications," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 2, 1284-1288, Feb. 2019, doi:10.1109/TAP.2018.2883565.
doi:10.1109/TAP.2018.2883565

7. David, R. M., M. S. Aw, T. Ali, and P. Kumar, "A multiband antenna stacked with novel metamaterial SCSRR and CSSRR for WiMAX/WLAN applications," Micromachines (Basel), Vol. 12, No. 2, 113, 2021.
doi:10.3390/mi12020113

8. Soliman, A., D. Elsheakh, E. Abdallah, and H. El-Hennawy, "Multiband printed metamaterial inverted-F antenna (IFA) for USB applications," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 297-300, 2015.
doi:10.1109/LAWP.2014.2360222

9. Nallapaneni, S. and P. Muthusamy, "Design of multiband fractal antenna loaded with parasitic elements for gain enhancement," Int. J. RF Microw. Comput. Aided Eng, Vol. 31, No. 6, Jun. 2021.
doi:10.1002/mmce.22622

10. Subbu, R. and R. Rani, "CPW-fed octagonal-shaped metamaterial-inspired multiband antenna on frequency selective surface for gain enhancement," Applied Physics A, Vol. 128, No. 7, 594, 2022.
doi:10.1007/s00339-022-05742-3

11. Khan, O. M., Z. Ul Islam, I. Rashid, F. A. Bhatti, and Q. Ul Islam, "Novel miniaturized koch pentagonal fractal antenna for multiband wireless applications," Progress In Electromagnetics Research, Vol. 141, 693-710, 2013.
doi:10.2528/PIER13060904

12. Li, D. and J. Mao, "A Koch-like sided fractal bow-tie dipole antenna," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 5, 2242-2251, May 2012.
doi:10.1109/TAP.2012.2189719

13. Gupta, M., V. Mathur, A. Kumar, V. Saxena, and D. Bhatnagar, "Microstrip hexagonal fractal antenna for military applications," Frequenz, Vol. 73, No. 9–10, 321-330, 2019.
doi:10.1515/freq-2019-0028

14. Samsuzzaman, M. and M. T. Islam, "Inverted S-shaped compact antenna for X-band applications," The Scientific World Journal, 604375, 2014.

15. Vijayvergiya, P. L. and R. K. Panigrahi, "Single-layer singlepatch dual band antenna for satellite applications," IET Microwaves, Antennas and Propagation, Vol. 11, No. 5, 664-669, 2017.
doi:10.1049/iet-map.2016.0393

16. Yang, X., L. Ge, Y. Ji, X. Zeng, and K. M. Luk, "Design of low-profile multi-band half-mode substrate-integrated waveguide antennas," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 10, 6639-6644, Oct. 2019.
doi:10.1109/TAP.2019.2924991

17. Surendrakumar, P. and B. Chandra Mohan, "A triple-frequency, vertex-fed antenna for WLAN/WiMAX applications [Antenna Applications Corner]," IEEE Antennas and Propagation Magazine, Vol. 60, No. 3, 101-106, 2018.
doi:10.1109/MAP.2018.2818007

18. Kumar, R., G. S. Saini, and D. Singh, "Compact tri-band patch antenna for Ku band applications," Progress In Electromagnetics Research C, Vol. 103, 45-58, 2020.
doi:10.2528/PIERC20013101

19. Chinnagurusamy, B., M. Perumalsamy, and A. S. T. Sarasam, "Design and fabrication of compact triangular multiband microstrip patch antenna for C- and X-band applications," International Journal of Communication Systems, Vol. 34, No. 15, 4939, 2021.
doi:10.1002/dac.4939

20. Agrawal, P. and M. Shandilya, "MATLAB simulation of subspace based high resolution direction of arrival estimation algorithm," International Journal of Computer Applications (0975– 8887), Vol. 130, No. 15, 22-27, Nov. 2015.
doi:10.5120/ijca2015907175

21. Jose, A., "Simulation of an adaptive digital beam former using matlab," International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST), Vol. 2, No. 12, 10-18, Dec. 2016.

22. Varnikha, N. and P. Jothilakshmi, "Modified minkowski multiband fractal antenna for satellite applications," International Journal of Microwave & Optical Technology, Vol. 18, No. 4, 367-376, Jul. 2023.

23. Jothilakshmi, K. and P. Jothilakshmi, "Design of multilayer microstrip patch antenna for satellite application," International Journal of Innovative Research in Computer and Communication Engineering, Vol. 5, No. 3, 190-195, Apr. 21, 2017.

24. Jothilakshmi Vishnu Prakash, P. and R. Srinivasan, "Miniaturised multiband two-element coaxial continuous transverse stub antenna for satellite C-band application," IET Microwaves, Antennas and Propagation, Vol. 8, No. 7, 474-481, May 2014.
doi:10.1049/iet-map.2013.0346

25. Vijetha, T. and D. R. Krishna, "A frequency reconfigurable MIMO antenna with UWB sensing for multi-band operations," International Journal of Microwave & Optical Technology, Vol. 18, No. 1, 57-68, Jan. 2023.

26. Kashyap, N., D. Singh, and Geetanjali, "A compact multiband annular-slotted patch rectenna for efficient energy harvesting," International Journal of Microwave & Optical Technology, Vol. 18, No. 3, 284-291, May 2023.

27. Patel, D. H. and G. D. Makwana, "Multiband antenna for GPS, IRNSS, Sub-6 GHz 5G and WLAN applications," Progress In Electromagnetics Research M, Vol. 116, 53-63, 2023.
doi:10.2528/PIERM23020902