Vol. 133
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-06-10
Enhancement of the Peak Power Handling Capability in Microstrip Filters by Employing Smooth-Profiled Conductor Strips
By
Progress In Electromagnetics Research C, Vol. 133, 219-231, 2023
Abstract
This paper presents a design methodology that significantly increases the peak power handling capability (PPHC) of microstrip filters. The PPHC is limited in microstrip technology by the corona effect: a physical phenomenon caused by the ionization of the air under the presence of strong electric fields around the planar circuit. Microstrip filters with a low electric field strength in the air increases the corona threshold level, resulting in high PPHC. Conventional stepped impedance (SI) filters, which consist of cascaded step-shaped elements, exhibit sharp discontinuities. These geometric edges amplify the electric field strength in the air, consequently reducing the corona threshold. Our research group has recently reported a new synthesis technique that introduces a smooth-profile (SP) conductor strip. This SP strip eliminates any sharp discontinuities and significantly reduces the strength of the electric field. This paper focuses on the examination of the high power performance of 7th-order SP and SI low-pass filters. The cut-off frequency (fc) for both types of filters is set at 447.45 MHz, while the frequency for maximum stop-band rejection (fo) is 1 GHz. The findings indicate that the SP filter shows a notable enhancement in peak power handling capability (PPHC), with gains of 2.48 dB and 4.80 dB observed at critical pressure and ambient pressure, respectively.
Citation
Jamil Ahmad, Jabir Hussain, Ivan Arregui, Petronilo Martin-Iglesias, Israel Arnedo, Miguel Laso, and Txema Lopetegi, "Enhancement of the Peak Power Handling Capability in Microstrip Filters by Employing Smooth-Profiled Conductor Strips," Progress In Electromagnetics Research C, Vol. 133, 219-231, 2023.
doi:10.2528/PIERC23040602
References

1. Cameron, R. J., C. M. Kudsia, and R. R. Mansour, Microwave Filters for Communication Systems, 2nd Ed., Wiley, 2018.
doi:10.1002/9781119292371

2. Maxwell, J. C., A Treatise on Electricity and Magnetism, 3rd Ed., Vol. 2, 68-73, Clarendon, 1892.

3. Woode, A. and J. Petit, "Diagnostic investigations into the multipactor effect, susceptibility zone measurements and parameters affecting a discharge," ESTEC Working Paper 1556, Eur. Spacy Agency, Noordwijk, The Netherlands, Nov. 1989.

4. Anderson, D., U. Jordon, M. Lisak, T. Olsson, and M. Ahlander, "Microwave breakdown in resonators and filters," IEEE Trans. Microw. Theory Techn., Vol. 47, No. 12, 2547-2556, Dec. 1999.
doi:10.1109/22.809005

5. MacDonald, A. D., Microwave Breakdown in Gases, Wiley, 1966.

6. Raizer, Y. P., Gas Discharge Physics, Springer, 1991.
doi:10.1007/978-3-642-61247-3

7. Woo, R., "Final report on RF voltage breakdown in coaxial transmission lines," Tech. Rep. 32-1500, Jet Propulsion Lab, CA, U.S.A., Oct. 1970.

8. Puech, J., M. Merecki, D. Anderson, M. Buyanova, D. Doroshkina, U. Jordan, L. Lapierre, M. Lisak, V. E. Semenov, J. Sombrin, and R. Udilijak, "Microwave discharge research activities within the contest of the Chalmers University (Sweden)/Institute of Applied Physics (Russia)/CNES (France) project," Proc. 4th Int. Workshop on Multipactor, Corona and Passive Intermodulation in Space RF Hardware (MULCOPIM), Sep. 2003.

9. Levy, R. and S. B. Cohn, "A history of microwave filter research, design, and development," IEEE Trans. Microw. Theory Tech., Vol. 32, No. 9, 1055-1067, Sept. 1984.
doi:10.1109/TMTT.1984.1132817

10. Levy, R., R. V. Snyder, and G. Matthaei, "Design of microwave filters," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 3, 783-793, Mar. 2002.
doi:10.1109/22.989962

11. Hunter, I. C., L. Billonet, B. Jarry, and P. Guillon, "Microwave filters --- Applications and technology," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 3, 794-805, Mar. 2002.
doi:10.1109/22.989963

12. Matthaei, G., L. Young, and E. M. T. Jones, Microwave Filters, Impedance-matching Networks, and Coupling Structures, Artech House, Inc., 1980.

13. Arnedo, I., I. Arregui, M. Chudzik, F. Teberio, A. Lujambio, D. Benito, T. Lopetegi, and M. A. G. Laso, "Direct and exact synthesis: Controlling the microwaves by means of synthesized passive components with smooth profiles," IEEE Microwave Magazine, Vol. 16, No. 4, 114-128, May 2015.
doi:10.1109/MMM.2015.2394011

14. Arnedo, I., M. Chudzik, J. M. Percaz, I. Arregui, F. Teberio, D. Benito, T. Lopetegi, and M. A. G. Laso, "Synthesis of one dimensional electromagnetic bandgap structures with fully controlled parameters," IEEE Trans. Microw. Theory Techn., Vol. 65, No. 9, 3123-3134, Sept. 2017.
doi:10.1109/TMTT.2017.2722401

15. Woo, W. and J. DeGroot, "Microwave absorption and plasma heating due to microwave breakdown in the atmosphere," IEEE Phys. Fluids, Vol. 27, No. 2, 475-487, 1984.
doi:10.1063/1.864645

16. Baher, H., Synthesis of Electrical Networks, John Wiley & Sons, 1984.

17. Ozaki, H. and J. Ishii, "Synthesis of a class of strip-line filters," IRE Trans. Circuit Theory, Vol. 5, No. 2, 104-109, Jun. 1958.
doi:10.1109/TCT.1958.1086441

18. Wenzel, R. J., "Exact design of TEM microwave networks using quarter-wave lines," IEEE Trans. Microw. Theory Tech., Vol. 12, No. 1, 94-111, Jan. 1964.
doi:10.1109/TMTT.1964.1125757

19. Minnis, B. J., Designing Microwave Circuits by Exact Synthesis, Artech House, 1996.

20. Carlin, H. J. and P. P. Civalleri, Wideband Circuit Design, CRC Press, 1998.

21. Richards, P. I., "Resistor-transmission-line circuits," Proc. IRE, Vol. 36, No. 2, 217-220, Feb. 1948.
doi:10.1109/JRPROC.1948.233274

22. Morales-Hernandez, A. M., M. A. Sanchez-Soriano, S. Marini, et al. "Increasing peak power handling in microstrip bandpass filter by using rounded-end resonantors," IEEE Microw. Wireless Compon. Lett., Vol. 31, No. 3, 237-240, Mar. 2021.
doi:10.1109/LMWC.2021.3050765

23. Feced, R., M. N. Zerbas, and M. A. Muriel, "An efficient inverse scattering algorithm for the design of nonuniform fiber bragg gratings," IEEE J. Quantum Electron., Vol. 35, No. 8, 1105-1115, Aug. 1999.
doi:10.1109/3.777209

24. Skaar, J., Synthesis and characterization of fiber Bragg gratings, Ph.D. Dissertation, The Norwegian University of Science and Technology, Norway, 2000.

25. Skaar, J., L. Wang, and T. Erdogan, "On the synthesis of fiber bragg gratings by layer peeling," IEEE J. Quantum Electron., Vol. 37, No. 2, 165-173, Feb. 2001.
doi:10.1109/3.903065

26. Poladian, L., "Simple grating synthesis algorithm," Opt. Lett., Vol. 25, No. 11, 787-789, Jun. 2000.
doi:10.1364/OL.25.000787

27. Poladian, L., "Simple grating synthesis algorithm: Errata," Opt. Lett., Vol. 25, No. 18, 1400-1400, Sept. 2000.
doi:10.1364/OL.25.001400

28. Sanchez-Soriano, M. A., Y. Quere, V. Le Saux, et al. "Peak and average power handling capability of microstrip filters," IEEE Trans. Microw. Theory Techn., Vol. 67, No. 8, 3436-3448, Aug. 2019.
doi:10.1109/TMTT.2019.2919509

29. Morales-Hernandez, A., M. A. Sanchez-Soriano, S. Marini, et al. "Enhancement of corona discharge thresholds in microstrip bandpass filters by using cover-ended resonators," International Journal of Microwave and Wireless Technologies, Vol. 13, 708-718, Apr. 2021.
doi:10.1017/S1759078721000532