Vol. 130
Latest Volume
All Volumes
PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-03-02
Angle Independent Metamaterial Absorber for S and C Band Application
By
Progress In Electromagnetics Research C, Vol. 130, 241-254, 2023
Abstract
In this paper, the development and design of angle independent Metamaterial Microwave Absorbers (MMAs) are presented. The unit cell consists of four trapezoids that are linked by consolidated resistors with the coextensive squares. The absorber is built on a dielectric substrate (FR4) with a thickness of 0.256 mm (λ/144) and a dielectric constant of 4.3. The wideband absorption is acquired in the range of 2.21 to 6.61 GHz with a wide band of 4.40 GHz with absorptivity above 90%. In the area of interest, a flat band is obtained, and to examine the current distribution and electric field in the respective region two peaks are considered at a frequency of 2.49 and 5.68 GHz, with maximum absorptivity of 92.50% and 92.14% respectively. The presented absorber is examined under different angles for phi and theta variation. From the phi variation, it is observed that for all the angles absorptivity does not vary which confirms that the absorber acts as an angle independent. The fabricated sheet consists of an array of a unit cell, which is examined inside an anechoic chamber with the help of two horn antennas and VNA. The tested and simulated results are compared, and it was observed that they are in close agreement. At last, the presented and already reported MMAs are compared, and it is observed that the presented one operates for the low frequency with higher bandwidth. The presented absorber can be practically used for defense applications for Radar Cross Sections (RCS) reduction.
Citation
Goriparthi Rajyalakshmi, Yada Ravi Kumar, Dasari Ramakrishna, and Kumbha Sambasiva Rao, "Angle Independent Metamaterial Absorber for S and C Band Application," Progress In Electromagnetics Research C, Vol. 130, 241-254, 2023.
doi:10.2528/PIERC22120501
References

1. Metamaterials, E., Transmission Line Theory and Microwave Applications, The Engineering Approach, C. Caloz, T. Itoh, 1, A John Wiley Sons Inc. Publication, 2005.

2. Schurig, D. R. S. D., J. J. Mock, and D. R. Smith, "Electric-field-coupled resonators for negative permittivity metamaterials," Applied Physics Letters, Vol. 88, No. 4, 041109, 2006.
doi:10.1063/1.2166681

3. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Physical Review Letters, Vol. 84, No. 18, 4184, 2000.
doi:10.1103/PhysRevLett.84.4184

4. Mishra, N., K. Kumari, and R. K. Chaudhary, "An ultra-thin polarization independent quad-band microwave absorber-based on compact metamaterial structures for EMI/EMC applications," International Journal of Microwave and Wireless Technologies, Vol. 10, No. 4, 422-429, 2018.
doi:10.1017/S1759078718000491

5. Grbic, A. and G. V. Eleftheriades, "Experimental verification of backward-wave radiation from a negative refractive index metamaterial," Journal of Applied Physics, Vol. 92, No. 10, 5930-5935, 2002.
doi:10.1063/1.1513194

6. Lee, S. H., C. M. Park, Y. M. Seo, and C. K. Kim, "Reversed Doppler effect in double negative metamaterials," Physical Review B, Vol. 81, No. 24, 241102, 2010.
doi:10.1103/PhysRevB.81.241102

7. Roy, K. and R. Sinha, "Miniaturized omni-directional ZOR antenna with its co-equal circuit for 5G applications," Microsystem Technologies, Vol. 28, No. 11, 2499-2509, 2022.
doi:10.1007/s00542-022-05384-8

8. Cai, W., U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nature Photonics, Vol. 1, No. 4, 224-227, 2007.
doi:10.1038/nphoton.2007.28

9. Yang, J. J., M. Huang, H. Tang, J. Zeng, and L. Dong, "Metamaterial sensors," International Journal of Antennas and Propagation, 2013.

10. Dong, Y. and T. Itoh, "Metamaterial-based antennas," Proceedings of the IEEE, Vol. 100, No. 7, 2271-2285, 2012.
doi:10.1109/JPROC.2012.2187631

11. Mishra, N. and R. K. Chaudhary, "Design and development of an ultrathin triple band microwave absorber using miniaturized metamaterial structure for near-unity absorption characteristics," Progress In Electromagnetics Research C, Vol. 94, 89-101, 2019.
doi:10.2528/PIERC19043002

12. Roy, K., C. Barde, P. Ranjan, R. Sinha, and D. Das, "A wide angle polarization insensitive multi-band metamaterial absorber for L, C, S and X band applications," Multimedia Tools and Applications, 1-13, 2022.

13. Mishra, N., D. K. Choudhary, R. Chowdhury, K. Kumari, and R. K. Chaudhary, "An investigation on compact ultra-thin triple band polarization independent metamaterial absorber for microwave frequency applications," IEEE Access, Vol. 5, 4370-4376, 2017.
doi:10.1109/ACCESS.2017.2675439

14. Roy, K., R. Sinha, and C. Barde, "Linear-to-linear polarization conversion using metasurface for X, Ku and K band applications," Frequenz, Vol. 76, No. 7-8, 461-470, 2022.
doi:10.1515/freq-2021-0204

15. Chin, J. Y., M. Lu, and T. J. Cui, "Metamaterial polarizers by electric-field-coupled resonators," Applied Physics Letters, Vol. 93, No. 25, 251903, 2008.
doi:10.1063/1.3054161

16. Ranjan, P., A. Choubey, and S. K. Mahto, "Wide-angle polarization independent multilayer microwave absorber using wind driven optimization technique," International Journal of Applied Engineering Research, Vol. 12, No. 19, 8016-8025, 2017.

17. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Physical Review Letters, Vol. 100, No. 20, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402

18. Baqir, M. A., M. Ghasemi, P. K. Choudhury, and B. Y. Majlis, "Design and analysis of nanostructured subwavelength metamaterial absorber operating in the UV and visible spectral range," Journal of Electromagnetic Waves and Applications, Vol. 29, No. 18, 2408-2419, 2015.
doi:10.1080/09205071.2015.1073124

19. Li, H., L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, "Ultrathin multiband gigahertz metamaterial absorbers," Journal of Applied Physics, Vol. 110, No. 1, 014909, 2011.
doi:10.1063/1.3608246

20. Cheng, Y.-Z., R.-Z. Gong, Y. Nie, and X. Wang, "A wideband metamaterial absorber based on a magnetic resonator loaded with lumped resistors," Chinese Physics B, Vol. 21, No. 12, 127801, 2012.
doi:10.1088/1674-1056/21/12/127801

21. Ayop, O., M. K. A. Rahim, N. A. Murad, and N. A. Samsuri, "Wideband polarization-insensitive metamaterial absorber with perfect dual resonances," Applied Physics A, Vol. 122, No. 4, 316, 2016.
doi:10.1007/s00339-016-9897-x