Vol. 118
Latest Volume
All Volumes
PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-02-27
Frequency Tunable Filtenna Using Defected Ground Structure Filter in the Sub-6 GHz for Cognitive Radio Applications
By
Progress In Electromagnetics Research C, Vol. 118, 213-229, 2022
Abstract
In this paper, a new frequency tunable filtering-antenna (so-called filtenna) is inspired by a Defected Ground Structure (DGS) band-pass filter for the fifth generation picocell base stations. It is intended for use in Cognitive Radio (CR) communications within the European Union Sub-6 GHz spectrum, which ranges between 3.4 and 3.8 GHz. Firstly, a Wideband (WB) monopole antenna is proposed where the operational frequencies cover 3.15-4.19 GHz, taking the 10-dB return loss level as a threshold. A band-pass filter of a Semi-Square Semi-Circle shape is integrated into the WB antenna ground to obtain the communicating filtenna. The narrowband frequency tunability is achieved by changing two varactor diode capacitances located on the filter slots. The antenna is prototyped occupying a total space of 60 x 80 x 0.77 mm3, then tested to verify the simulated results. Three operating frequencies 3.4, 3.6 and 3.8 GHz of the filtenna are studied in terms of return loss, realized gain and radiation patterns which verify that the frequency shift has almost no effect on the antenna performance. The filtenna has a maximum gain of 4.5 dBi in measurements and 3.47 dBi in simulations. The obtained results have proved their efficiency for CR communications.
Citation
Aicha Bembarka, Larbi Setti, Abdelwahed Tribak, Hamza Nachouane, and Hafid Tizyi, "Frequency Tunable Filtenna Using Defected Ground Structure Filter in the Sub-6 GHz for Cognitive Radio Applications," Progress In Electromagnetics Research C, Vol. 118, 213-229, 2022.
doi:10.2528/PIERC22011403
References

1. Wired vs. Wireless Technologies for Communication Networks in Utility Markets, https://www.utilityproducts.com/test-measurement/article/16002788/wired-vs-wireless-technologies-for-communication-networks-in-utility-markets, January 7, 2022.

2. Vodafone and Samsung strategic partnership to launch Smart Home services, https://www.vodafone.com/news-and-media/vodafone-group-releases/news/vodafone-and-samsung-strategic-partership, January 7, 2022.

3. Global update on spectrum for 4G and 5G, https://www.qualcomm.com/media/documents/files/spectrum-for-4g-and-5g.pdf, December 2020.

4. Dudzinsky, Jr., S. J. Atmospheric effect on terrestrial millimeter-wave communication, https://www.rand.org., March 1974.
doi:10.1109/EUMA.1974.332040

5. Kusaladharma, S. and C. Tellambura, "An overview of cognitive radio networks," Wiley Encycl. Electr. Electron. Eng., August 2017.

6. Kingsly, S., D. Thangarasu, M. Kanagasabai, M. Gulam Nabi Alsath, R. R. Thipparaju, S. K. Palaniswamy, and P. Sambandam, "Multiband reconfigurable filtering monopole antenna for cognitive radio applications," IEEE Antennas Wirel. Propag. Lett., Vol. 17, No. 8, 1416-1420, 2018.
doi:10.1109/LAWP.2018.2848702

7. Tang, M. C., Z. Wen, H. Wang, M. Li, and R. W. Ziolkowski, "Compact, Frequency-reconfigurable filtenna with sharply defined wideband and continuously tunable narrowband states," IEEE Trans. Antennas Propag., Vol. 65, No. 10, 5026-5034, 2017.
doi:10.1109/TAP.2017.2736535

8. Mishra, S. R. and S. Kochuthundil Lalitha, "Filtennas for wireless application: A review," Int. J. RF Microw. Comput. Aided Eng., Vol. 29, No. 10, 1-28, 2019.

9. Nella, A. and A. S. Gandhi, "A five-port integrated UWB and narrowband antennas system design for CR applications," IEEE Trans. Antennas Propag., Vol. 66, No. 4, 1669-1676, 2018.
doi:10.1109/TAP.2018.2800718

10. Nachouane, H., A. Najid, A. Tribak, and F. Riouch, "Dual port antenna combining sensing and communication tasks for cognitive radio," International Journal of Electronics and Telecommunications, Vol. 62, No. 2, 121-127, 2016.
doi:10.1515/eletel-2016-0016

11. Srikar, D. and S. Anuradha, "A compact 3 port integrated wide band sensing antenna and narrow band antennas for cognitive radio applications," 2019 PhotonIcs & Electromagnetics Research Symposium --- Spring (PIERS --- Spring), Rome, Italy, June 17-20, 2019.

12. Ramadan, A. H., J. Costantine, M. Al-Husseini, K. Y. Kabalan, Y. Tawk, and C. G. Christodoulou, "Tunable filter-antennas for cognitive radio applications," Progress In Electromagnetics Research B, Vol. 57, 253-265, 2014.
doi:10.2528/PIERB13112005

13. Atallah, H. A., A. B. Abdel-Rahman, K. Yoshitomi, and R. K. Pokharel, "Compact frequency reconfigurable filtennas using varactor loaded T-shaped and H-shaped resonators for cognitive radio applications," IET Microwaves, Antennas Propag., Vol. 10, No. 9, 991-1001, 2016.
doi:10.1049/iet-map.2015.0700

14. Lee, W. W. and B. Jang, "A tunable MIMO antenna with dual-port structure for mobile phones," IEEE Access, Vol. 7, 34113-34120, 2019.
doi:10.1109/ACCESS.2019.2904051

15. Hannula, J. M., T. O. Saarinen, A. Lehtovuori, J. Holopainen, and V. Viikari, "Tunable eight-element MIMO antenna based on the antenna cluster concept," IET Microwaves, Antennas Propag., Vol. 13, No. 7, 959-965, 2019.
doi:10.1049/iet-map.2018.5742

16. Ikeda, T., S. Saito, and Y. Kimura, "A frequency-tunable varactor-loaded single-layer ring microstrip antennas fed by an L-probe with a reduced bias circuit," 2017 International Symposium on Antennas and Propagation (ISAP), Thailand, October 30-November 2, 2017.

17. Fischer, B. E., I. J. Lahaie, M. D. Huang, M. H. A. J. Herben, A. C. F. Reniers, and P. F. M. Smulders, "Measurements corner: Causes of discrepancies between measurements and EM simulations of millimeter-wave antennas," IEEE Antennas Propag. Mag., Vol. 55, No. 6, 139-149, 2013.
doi:10.1109/MAP.2013.6781719

18. Chen, C. J., "Design of parallel-coupled dual-mode resonator bandpass filters," IEEE Trans. Components, Packag. Manuf. Technol., Vol. 6, No. 10, 1542-1548, 2016.
doi:10.1109/TCPMT.2016.2601647

19. Liu, Q., D. F. Zhou, D. W. Zhang, D. L. Lu, and Y. Zhang, "Dual-mode microstrip patch bandpass filters with generalized frequency responses," IEEE Access, Vol. 7, 163537-163546, 2019.
doi:10.1109/ACCESS.2019.2952403

20. Shome, P. P. and T. Khan, "A quintuple mode resonator based bandpass filter for ultra-wideband applications," Microsyst. Technol., Vol. 26, 2295-2304, 2020.
doi:10.1007/s00542-019-04697-5

21. Lin, S. C., P. H. Deng, Y. S. Lin, C. H. Wang, and C. H. Chen, "Wide-stopband microstrip bandpass filters using dissimilar quarter-wavelength stepped-impedance resonators," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 3, 1011-1018, 2006.
doi:10.1109/TMTT.2005.864139

22. Sekiya, N. and S. Sugiyama, "HTS dual-band bandpass filters using stub-loaded hair-pin resonators for mobile communication systems," Phys. C Supercond. and Its Appl., Vol. 504, 88-92, 2014.
doi:10.1016/j.physc.2014.03.021

23. Pozar, D. M., Microwave Engineering, John Wiley & Sons, 2011.

24. Balanis, C. A., Advanced Engineering Electromagnetic, John Wiley & Sons, 1999.

25. Zhang, Z., F. Zhao, and A. Wu, "A tunable open ring coupling structure and its application in fully tunable bandpass filter," Int. J. Microw. Wirel. Technol., Vol. 11, No. 8, 782-786, 2019.
doi:10.1017/S1759078719000485

26. Varactor Diode BB659, Data Sheet, Semiconductor and System Solutions-Infineon Technologies, https://www.infineon.com/, January 6, 2022.

27. Wen, L. H., S. Gao, Q. Luo, Q. Yang, W. Hu, and Y. Yin, "A low-cost differentially driven dual-polarized patch antenna by using open-loop resonators," IEEE Trans. Antennas Propag., Vol. 67, No. 4, 2745-2750, 2019.
doi:10.1109/TAP.2019.2896491