1. Ahmad, A., M. S. Alam, and R. Chabaan, "A comprehensive review of wireless charging technologies for electric vehicles," IEEE Transactions on Transportation Electrification, Vol. 4, No. 1, 38-63, 2017.
doi:10.1109/TTE.2017.2771619
2. Li, S. and C. C. Mi, "Wireless power transfer for electric vehicle applications," IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 3, No. 1, 4-17, 2015.
doi:10.1109/JESTPE.2014.2319453
3. Zhang, X., P. Zhang, Q. Yang, Z. Yuan, and H. Su, "Magnetic shielding design and analysis for wireless charging coupler of electric vehicles based on finite element method," Transactions of China Electrotechnical Society, Vol. 31, No. 1, 71-79, 2016.
doi:10.1149/2.0401602jes
4. Campi, T., S. Cruciani, F. Maradei, and M. Feliziani, "Magnetic shielding design of wireless power transfer system," 2015 31st International Review of Progress in Applied Computational Electromagnetics (ACES), 1-2, Williamsburg, 2015.
5. Kim, J., H. Kim, C. Song, I.-M. Kim, Y.-I. Kim, and J. Kim, "Electromagnetic interference and radiation from wireless power transfer systems," 2014 IEEE International Symposium on Electromagnetic Compatibility (EMC), 171-176, Raleigh, 2014.
6. Zhang, X., Z. Wang, B. Wei, S. Wang, and Q. Yang, "Analysis of the influence of electric shield on space magnetic field in electric vehicle wireless charging system," Transactions of China Electrotechnical Society, Vol. 34, No. 8, 1580-1588, 2019.
7. Pavelek, M., M. Frivaldsky, and P. Spanik, "Influence of the passive shielding on the transfer characteristics of the wireless power transfer systems," 2017 19th International Conference on Electrical Drives and Power Electronics (EDPE), 94-99, Dubrovnik, 2017.
8. Lu, M. and K. D. T. Ngo, "Circuit models and fast optimization of litzshield for inductive-power- transfer coils," IEEE Transactions on Power Electronics, Vol. 34, No. 5, 4678-4688, 2019.
doi:10.1109/TPEL.2018.2865649
9. Lu, M. and K. D. T. Ngo, "Comparison of passive shields for coils in inductive power transfer," IEEE Applied Power Electronics Conference and Exposition --- APEC, 1419-1424, 2017.
10. Park, S. W., "Evaluation of elecromagnetic exposure during 85 kHz wireless power transfer for electric vehicles," IEEE Transactions on Magnetics, Vol. 54, No. 1, 1-8, 2018.
11. Ding, P.-P., L. Bernard, L. Pichon, and A. Razek, "Evaluation of electromagnetic fields in human body exposed to wireless inductive charging system," IEEE Transactions on Magnetics, Vol. 20, No. 2, 1037-1040, 2014.
doi:10.1109/TMAG.2013.2284245
12. Shimamoto, T., I. Laakso, and A. Hirata, "In-situ electric field in human body model in different postures for wireless power transfer system in an electrical vehicle," Physics in Medicine and Biology, Vol. 60, No. 1, 163-173, 2015.
doi:10.1088/0031-9155/60/1/163
13. Shimamoto, T., I. Laakso, and A. Hirata, "Internal electric field in pregnant-woman model for wireless power transfer systems in electric vehicles," Electronics Letters, Vol. 51, No. 25, 2136-2137, 2015.
doi:10.1049/el.2015.2457
14. Shah, I. A., Y. Cho, and H. Yoo, "Safety evaluation of medical implants in the human body for a wireless power transfer system in an electric vehicle," IEEE Transactions on Electromagnetic Compatibility, Vol. 62, No. 2, 338-345, 2020.
doi:10.1109/TEMC.2019.2903844
15. De Santis, V., T. Campi, S. Cruciani, I. Laakso, and M. Feliziani, "Assessment of the induced electric fields in a carbon-fiber electrical vehicle equipped with a wireless power transfer system," Energies, Vol. 11, No. 3, 684, 2018.
doi:10.3390/en11030684
16. Miw, K., T. Takenaka, and A. Hirata, "Electromagnetic dosimetry and compliance for wireless power transfer systems in vehicles," IEEE Transactions on Electromagnetic Compatibility, Vol. 61, No. 6, 2024-2030, 2019.
doi:10.1109/TEMC.2019.2949983
17. Lan, J. and A. Hirata, "Effect of loudspeakers on the in situ electric field in a driver body model exposed to an electric vehicle wireless power transfer system," Energies, Vol. 13, No. 14, 3635, 2020.
doi:10.3390/en13143635
18. SAE TIR J2954, Wireless Power Transfer for Light-Duty Plug-In/Electric Vehicles and Alignment Methodology; SAE International: Warrendale, PA, USA, 2016.
19., IEC 61980-1. Electric Vehicle Wireless Power Transfer (WPT) Systems-Part 1: General Requirements; International Electrotechnical Commission: Geneva, Switzerland, 2015.
20. Zhou, W., M. Lu, and B. Chen, "Safety evaluation on high frequency electromagnetic exposure in driver's cab of subway train," China Railway Science, Vol. 36, No. 5, 116-121, 2015.
21. Lu, M. and S. Ueno, "Comparison of the induced fields using different coil configurations during deep transcranial magnetic stimulation," Plos One, Vol. 12, No. 6, 1-12, 2017.
22. Lu, M. and S. Ueno, "Deep transcranial magnetic stimulation using figure-of-eight and halo coils," IEEE Transactions on Magnetics, Vol. 51, No. 11, 1-4, 2015.
23. Rush, S. and D. A. Driscoll, "Current distribution in the brain from surface electrodes," Anesthesia and Analgesia, Vol. 47, No. 6, 717723, 1968.
doi:10.1213/00000539-196811000-00016
24. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues," Physics in Medicine and Biology, Vol. 41, No. 11, 2271-2293, 1996.
doi:10.1088/0031-9155/41/11/003
25. Li, J. and M. Lu, "Safety evaluation on electromagnetic exposure of radio frequency antenna in typical subway platform," China Railway Science, Vol. 41, No. 2, 157-164, 2020.
26. Tian, R. and M. Lu, "Safety assessment of electromagnetic exposure in high-speed train carriage with full passengers," Annals of Work Exposures and Health, 1-14, 2020.
27. Başyiğit, I. B., A. Genç, and S. Helhel, "Effect of orientation of RF sources maintained within the enclosures on electrical shielding effectiveness performance," Turkish Journal of Electrical Engineering and Computer Sciences, Vol. 27, No. 4, 3088-3097, 2019.
doi:10.3906/elk-1902-68
28. Basyigit, I. B., H. Dogan, and S. Helhel, "The effect of aperture shape, angle of incidence and polarization on shielding effectiveness of metallic enclosures," Journal of Microwave Power and Electromagnetic Energy, Vol. 53, No. 2, 115-127, 2019.
doi:10.1080/08327823.2019.1607496
29. Basyigit, I. B. and M. F. Caglar, "Investigation of the magnetic shielding parameters of rectangular enclosures with apertures at 0 to 3 GHz," Electromagnetics, Vol. 36, No. 7, 434446, 2016.
doi:10.1080/02726343.2016.1220907
30. Zamanian, Z., S. M. J. Mortazavi, E. Asmand, and K. Nikeghbal, "Assessment of health consequences of steel industry welders' occupational exposure to ultraviolet radiation," International Journal of Preventive Medicine, Vol. 6, No. 1, 123, 2015.
doi:10.4103/2008-7802.172379
31. ICNIRP "Guidelines for limiting exposure to time-varying electric and magnetic fields (1 Hz to 100 kHz)," Health Physics, Vol. 99, No. 6, 818-836, 2010.
doi:10.1097/HP.0b013e3181f06c86
32. ICNIRP "Guidelines for limiting exposure to electromagnetic fields (100 kHz to 300 GHz)," Health Physics, Vol. 118, No. 5, 483-524, 2020.
doi:10.1097/HP.0000000000001210