1. Joshi, S. and G. Moddel, "Rectennas at optical frequencies: How to analyze the response?," Journal of Applied Physics, Vol. 118, No. 8, 084503, 2015.
doi:10.1063/1.4929648
2. Bagher, A. M., M. M. A. Vahid, and M. Mohsen, "Types of solar cells and application," American Journal of Optics and Photonics, Vol. 3, No. 5, 94-113, 2015.
doi:10.11648/j.ajop.20150305.17
3. Eldin, A. H., M. Refaey, and A. Farghly, "A review on photovoltaic solar energy technology and its efficiency," 17th International Middle-East Power System Conference (MEPCON’15), at Mansoura University, Egypt, 1-7, 2015.
4. Sabaawi, A. M., C. C. Tsimenidis, and B. S. Sharif, "Analysis and modeling of infrared solar rectennas," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 19, No. 3, 9000208-9000208, 2013.
doi:10.1109/JSTQE.2012.2227686
5. Moddel, G. and S. Grover, Rectenna Solar Cells, Springer, 2013.
doi:10.1007/978-1-4614-3716-1
6. Mescia, L. and A. Massaro, "New trends in energy harvesting from earth long-wave infrared emission," Advances in Materials Science and Engineering, Vol. 2014, 2014.
7. Grover, S. and G. Moddel, "Applicability of Metal/Insulator/Metal (MIM) diodes to solar rectennas," IEEE Journal of Photovoltaics, Vol. 1, No. 1, 78-83, 2011.
doi:10.1109/JPHOTOV.2011.2160489
8. Di Garbo, C., P. Livreri, and G. Vitale, "Review of infrared nanoantennas for energy harvesting," International Conference on Modern Electrical Power Engineering (ICMEPE-2016), 2016.
9. Zhu, Z., S. Joshi, and G. Moddel, "High performance room temperature rectenna IR detectors using graphene geometric diodes," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 20, No. 6, 70-78, 2014.
doi:10.1109/JSTQE.2014.2318276
10. Gadalla, M. N., M. Abdel-Rahman, and A. Shamim, "Design, optimization and fabrication of a 28.3 THz nano-rectenna for infrared detection and rectification," Scientific Reports, Vol. 4, 4270, 2014.
11. Vandenbosch, G. A. and Z. Ma, "Upper bounds for the solar energy harvesting efficiency of nano-antennas," Nano Energy, Vol. 1, No. 3, 494-502, 2012.
doi:10.1016/j.nanoen.2012.03.002
12. Yan, S., B. Tumendemberel, X. Zheng, V. Volskiy, G. A. Vandenbosch, and V. V. Moshchalkov, "Optimizing the bowtie nano-rectenna topology for solar energy harvesting applications," Solar Energy, Vol. 157, 259-262, 2017.
doi:10.1016/j.solener.2017.08.035
13. Hussein, M., N. F. F. Areed, M. F. O. Hameed, and S. S. A. Obayya, "Design of flower-shaped dipole nano-antenna for energy harvesting," IET Optoelectronics, Vol. 8, No. 4, 167-173, 2014.
doi:10.1049/iet-opt.2013.0108
14. El-Toukhy, Y. M., M. Hussein, M. F. O. Hameed, A. Heikal, M. Abd-Elrazzak, and S. Obayya, "Optimized tapered dipole nanoantenna as efficient energy harvester," Optics Express, Vol. 24, No. 14, A1107-A1122, 2016.
doi:10.1364/OE.24.0A1107
15. Sallam, M. O., G. A. Vandenbosch, G. G. Gielen, and E. A. Soliman, "Novel wire-grid nano-antenna array with circularly polarized radiation for wireless optical communication systems," Journal of Lightwave Technology, Vol. 35, No. 21, 4700-4706, 2017.
doi:10.1109/JLT.2017.2751674
16. Zhao, H., H. Gao, T. Cao, and B. Li, "Efficient full-spectrum utilization, reception and conversion of solar energy by broad-band nanospiral antenna," Optics Express, Vol. 26, No. 2, A178-A191, 2018.
doi:10.1364/OE.26.00A178
17. Elsaid, M., K. R. Mahmoud, M. F. O. Hameed, S. Obayya, and M. Hussein, "Broadband directional rhombic nanoantenna for optical wireless communications systems," JOSA B, Vol. 37, No. 4, 1183-1189, 2020.
doi:10.1364/JOSAB.383458
18. Ranga, R., Y. Kalra, and K. Kishor, "“Petal shaped nanoantenna for solar energy harvesting," Journal of Optics, Vol. 22, No. 3, 035001, 2020.
19. Balanis, C. A., Antenna Theory: Analysis and Design, John Wiley & Sons, 2016.
20. Kotter, D. K., S. D. Novack, W. Slafer, and P. Pinhero, "Theory and manufacturing processes of solar nanoantenna electromagnetic collectors," Journal of Solar Energy Engineering, Vol. 132, No. 1, 011014, 2010.
doi:10.1115/1.4000577
21. Wei, C., S. P. Lewis, E. Mele, and A. M. Rappe, "Reciprocity theorems and pseudoelectric fields for ab initio force calculations," Physical Review B, Vol. 55, No. 23, 15356, 1997.
doi:10.1103/PhysRevB.55.15356
22. Stutzman, W. L. and G. A. Thiele, Antenna Theory and Design, John Wiley & Sons, 2012.
23. Obayya, S., N. F. F. Areed, M. F. O. Hameed, and M. H. Abdelrazik, "Optical nano-antennas for energy harvesting," Innovative Materials and Systems for Energy Harvesting Applications, 26-62, IGI Global, 2015.
24. Soliman, E. A., M. O. Sallam, and G. A. Vandenbosch, "Plasmonic grid array of gold nanorods for point-to-point optical communications," Journal of Lightwave Technology, Vol. 32, No. 24, 4898-4904, 2014.
doi:10.1109/JLT.2014.2369493
25. Costa, J. R. and J. Guterman, "Introduction to antenna and near-field simulation in CST microwave studio software," IEEE Communication Society, Portugal Chapter, 2010.
26. Clemens, M. and T. Weiland, "Discrete electromagnetism with the finite integration technique — Abstract," Journal of Electromagnetic Waves and Applications, Vol. 15, No. 1, 79-80, 2001.
doi:10.1163/156939301X00661
27. "C. S. T. Studio Suite,", in ed: https://www.cst.com, 2016.
doi:10.1163/156939301X00661
28. Paul, L. C., M. S. Hosain, S. Sarker, M. H. Prio, M. Morshed, and A. K. Sarkar, "The effect of changing substrate material and thickness on the performance of inset feed microstrip patch antenna," American Journal of Networks and Communications, Vol. 4, No. 3, 54-58, 2015.
doi:10.11648/j.ajnc.20150403.16