Vol. 109
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-02-16
A Triple-Band Antenna with a Metamaterial Slab for Gain Enhancement and Specific Absorption Rate (SAR) Reduction
By
Progress In Electromagnetics Research C, Vol. 109, 275-287, 2021
Abstract
A compact triple-band antenna of size 20×13×1.6 mm3 for WLAN (2.4/5 GHz) and WiMAX (3.5 GHz) applications and a metamaterial slab for Specific Absorption Rate (SAR) reduction are proposed in this paper. The antenna comprises a rectangular patch with two conjoint square split rings, attached along its top edge, to excite two resonances in the 2.5 GHz and 5.5 GHz range. The antenna is also backed with a slotted ground plane structure to achieve miniaturization. The radiator is subsequently slotted to yield the third tone around 3.5 GHz. Several parameters are tuned independently to achieve the desired bands of resonance around (2.2-2.6) GHz, (3.40-3.60) GHz, and (5.0-6.9) GHz with impedance bandwidths of 17%, 5.5%, and 46%, respectively. To validate the simulated results, the designed antenna is fabricated and measured experimentally. Later, a metamaterial slab composed of a 5×3 array of pentagonal split-rings printed on a 20×13×1.6 mm3 FR-4 substrate is placed above the antenna at a suitable distance to increase the gain as well as to reduce the SAR. Inclusion of this slab improved the maximum radiation efficiency and gain of the proposed antenna from 65% and 2.7 dB to 80% and 3 dB. A cubical tissue model is designed and used for simulation. SAR reduction of 84.5% is inferred with the metamaterial slab. This paper has taken a cubical tissue model for SAR calculation, which can be further enhanced by taking a human phantom model in future.
Citation
Selvaraj Imaculate Rosaline, "A Triple-Band Antenna with a Metamaterial Slab for Gain Enhancement and Specific Absorption Rate (SAR) Reduction," Progress In Electromagnetics Research C, Vol. 109, 275-287, 2021.
doi:10.2528/PIERC20122202
References

1. Gautam, A. K., A. Bisht, and B. K. Kanaujia, "A wideband antenna with defected ground plane forWLAN/WiMAX applications," AEU --- International Journal of Electronics and Communications, Vol. 70, No. 3, 354-358, 2016.
doi:10.1016/j.aeue.2015.12.013

2. Saraswat, R. K. and M. Kumar, "Miniaturized slotted ground UWB antenna loaded with metamaterial for WLAN and WiMAX applications," Progress In Electromagnetics Research, Vol. 65, 65-80, 2016.
doi:10.2528/PIERB15112703

3. Li, L., et al., "A compact triple-band printed monopole antenna for WLAN/WiMAX applications," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1853-1855, 2016.
doi:10.1109/LAWP.2016.2539358

4. Hoang, T. V., et al., "Quad-band circularly polarized antenna for 2.4/5.3/5.8-GHz WLAN and 3.5-GHz WiMAX applications," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1032-1035, 2015.

5. Naidu, P. V., A. Malhotra, and R. Kumar, "A compact ACS-fed dual-band monopole antenna for LTE, WLAN/WiMAX and public safety applications," Microsystem Technologies, Vol. 22, No. 5, 1021-1028, 2016.
doi:10.1007/s00542-015-2562-z

6. Mathew, S., et al., "Compact dual polarised V slit, stub and slot embedded circular patch antenna for UMTS/WiMAX/WLAN applications," Electronics Letters, Vol. 52, No. 17, 1425-1426, 2016.
doi:10.1049/el.2016.1996

7. Kunwar, A., A. K. Gautam, and B. K. Kanaujia, "Inverted L-slot triple-band antenna with defected ground structure for WLAN and WiMAX applications," International Journal of Microwave and Wireless Technologies, Vol. 9, No. 1, 191-196, 2017.
doi:10.1017/S1759078715001105

8. Ahmad, H., et al., "Compact triband slotted printed monopole antenna for WLAN and WiMAX applications," International Journal of RF and Microwave Computer-Aided Engineering, 2019.

9. Nelaturi, S. and N. V. S. N. Sarma, "A compact microstrip patch antenna based on metamaterials for Wi-Fi and WiMAX applications," Journal of Electromagnetic Engineering and Science, Vol. 18, No. 3, 182-187, 2018.
doi:10.26866/jees.2018.18.3.182

10. Ali, T., et al., "A multiband antenna loaded with metamaterial and slots for GPS/WLAN/WiMAX applications," Microwave and Optical Technology Letters, Vol. 60, No. 1, 79-85, 2018.
doi:10.1002/mop.30921

11. Li, H., et al., "Dual-band planar antenna loaded with CRLH unit cell for WLAN/WiMAX application," IET Microwaves, Antennas & Propagation, Vol. 12, No. 1, 132-136, 2017.
doi:10.1049/iet-map.2016.1133

12. Alibakhshikenari, M., et al., "A comprehensive survey of “Metamaterial transmission-line based antennas: Design, challenges, and applications”," IEEE Access, Vol. 8, 144778-144808, 2020.
doi:10.1109/ACCESS.2020.3013698

13. Alibakhshikenari, M., et al., "Super-wide impedance bandwidth planar antenna for microwave and millimeter-wave applications," Sensors, Vol. 19, No. 10, 2306, 2019.
doi:10.3390/s19102306

14. Alibakhshi-Kenari, M., M. Naser-Moghadasi, and R. A. Sadeghzadeh, "Bandwidth and radiation specifications enhancement of monopole antennas loaded with split ring resonators," IET Microwaves, Antennas & Propagation, Vol. 9, No. 14, 1487-1496, 2015.
doi:10.1049/iet-map.2015.0172

15. Alibakhshi-Kenari, M., M. Naser-Moghadasi, and R. Sadeghzadeh, "The resonating MTM-based miniaturized antennas for wide-band RF-microwave systems," Microwave and Optical Technology Letters, Vol. 57, No. 10, 2339-2344, 2015.
doi:10.1002/mop.29328

16. Alibakhshi-Kenari, M., et al., "Miniature CRLH-based ultra wideband antenna with gain enhancement for wireless communication applications," ICT Express, Vol. 2, No. 2, 75-79, 2016.
doi:10.1016/j.icte.2016.04.001

17. Alibakhshikenari, M., et al., "Miniaturised planar-patch antenna based on metamaterial L-shaped unit-cells for broadband portable microwave devices and multiband wireless communication systems," IET Microwaves, Antennas & Propagation, Vol. 12, No. 7, 1080-1086, 2018.
doi:10.1049/iet-map.2016.1141

18. Alibakhshikenari, M., B. S. Virdee, and E. Limiti, "Compact single-layer traveling-wave antenna design using metamaterial transmission lines," Radio Science, Vol. 52, No. 12, 1510-1521, 2017.
doi:10.1002/2017RS006313

19. Alibakhshi-Kenari, M., et al., "New CRLH-based planar slotted antennas with helical inductors for wireless communication systems, RF-circuits and microwave devices at UHF-SHF bands," Wireless Personal Communications, Vol. 92, No. 3, 1029-1038, 2017.
doi:10.1007/s11277-016-3590-4

20. Alibakhshi-Kenari, M., et al., "Periodic array of complementary artificial magnetic conductor metamaterials-based multiband antennas for broadband wireless transceivers," IET Microwaves, Antennas & Propagation, Vol. 10, No. 15, 1682-1691, 2016.
doi:10.1049/iet-map.2016.0069

21. Alibakhshi-Kenari, M., et al., "New compact antenna based on simplified CRLH-TL for UWB wireless communication systems," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 26, No. 3, 217-225, 2016.
doi:10.1002/mmce.20956

22. Alibakhshi-Kenari, M., et al., "Metamaterial-based antennas for integration in UWB transceivers and portable microwave handsets," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 26, No. 1, 88-96, 2016.
doi:10.1002/mmce.20942

23. Sallam, M. O., et al., "Wideband CPW-fed flexible bow-tie slot antenna for WLAN/WiMax systems," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 8, 4274-4277, 2017.
doi:10.1109/TAP.2017.2710227

24. Priyadarshini, S. J. and D. J. Hemanth, "Investigation and reduction methods of specific absorption rate for biomedical applications: A survey," International Journal of RF and Microwave Computer- Aided Engineering, Vol. 28, No. 3, e21211, 2018.
doi:10.1002/mmce.21211

25. Stephen, J. P. and D. J. Hemanth, "An investigation on specific absorption rate reduction materials with human tissue cube for biomedical applications," International Journal of RF and Microwave Computer-Aided Engineering, e21960, 2019.

26. Hwang, J.-N. and F.-C. Chen, "Reduction of the peak SAR in the human head with metamaterials," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 12, 3763-3770, 2006.
doi:10.1109/TAP.2006.886501

27. Saraswat, R. K. and M. Kumar, "A metamaterial hepta-band antenna for wireless applications with specific absorption rate reduction," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, No. 10, e21824, 2019.

28. Imaculate Rosaline, S. and S. Raghavan, "Design and analysis of a SRR superstrate for SAR reduction," Journal of Electromagnetic Waves and Applications, Vol. 29, No. 17, 2330-2338, 2015.
doi:10.1080/09205071.2015.1091384

29. Janapala, D. K., et al., "Specific absorption rate reduction using metasurface unit cell for flexible polydimethylsiloxane antenna for 2.4 GHz wearable applications," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, No. 9, e21835, 2019.
doi:10.1002/mmce.21835

30. Gil, I., R. Seager, and R. Fernandez-Garcıa, "Embroidered metamaterial antenna for optimized performance on wearable applications," Physica Status Solidi (A), Vol. 215, No. 21, 1800377, 2018.
doi:10.1002/pssa.201800377

31. Nazeri, A., A. Abdolali, and M. Mehdi, "An extremely safe low-SAR antenna with study of its electromagnetic biological effects on human head," Wireless Personal Communications, 1-14, 2019.

32. Ramachandran, T., et al., "Specific absorption rate reduction of multi split square ring metamaterial for L- and S-band application," Results in Physics, 102668, 2019.
doi:10.1016/j.rinp.2019.102668

33. Chen, H., J. Zhang, Y. Bai, et al. "Experimental retrieval of the effective parameters of metamaterials based on a waveguide method," Opt. Express., Vol. 14, 12944-12949, 2006, 10.1364/OE.14.012944.
doi:10.1364/OE.14.012944

34. Smith, D. R., et al., "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Physical Review E, Vol. 71, No. 3, 036617, 2005.
doi:10.1103/PhysRevE.71.036617

35. Baena, J. D., J. Bonache, F. Martın, R. Marques, F. Falcone, T. Lopetegi, M. Laso, J. Garcıa- Garcıa, I. Gil, M. Portillo, and M. Sorolla Ayza, "Equivalent-Circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, 1451-1461, 2005, 10.1109/TMTT.2005.845211.
doi:10.1109/TMTT.2005.845211