Vol. 107
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-12-24
On Application of Taper Windows for Sidelobe Suppression in LFM Pulse Compression
By
Progress In Electromagnetics Research C, Vol. 107, 259-271, 2021
Abstract
The efficiency of the standard tapered windows as applied to sidelobe suppression in compressed pulses with linear frequency modulation (LFM) or chirp pulses corresponds to the literature data only in the case of rather great values of the pulse duration-bandwidth product B≥100. With comparatively small values of B (several dozens or so) the side-lobe levels prove to be essentially greater than those announced in the literature. In the paper, the output signal of the chirp-pulse compression filter is analyzed in order to look into causes of discrepancy between the sidelobe level obtainable using standard tapered windows and the literature data. Expressions are derived for estimating the maximum number of zeros and maxima in the response of the optimum filter of chirp-pulse compression and separation between adjacent and ``like'' (with the same numbers) zeros and maxima in dependence on the signal duration-bandwidth product. The amount of loss in the signal-to-noise ratio due to application of smoothing functions is determined. The case of applying window functions in the form of cosine harmonics of the Fourier series, which describes a rather great number of the standard windows, is analyzed in detail. Analytical expressions are presented for the output signal of the chirp-pulse compression filter on the basis of such windows and the amount of loss in the signal-to-noise ratio. A comparative analysis of the Hamming and Blackman windows is made in dependence on the pulse duration-bandwidth product B. It is shown that application of the Hamming window is more efficient up to B≈80. For greater values of B, the Blackman window shows a higher efficiency. As B increases, the efficiency of both windows steadily increases asymptotically approaching the figure declared in the literature. Coefficients of window functions containing 2 cosine harmonics of the Fourier series have empirically been selected which made it possible to reduce the sidelobe level by approximately 0.34 dB for B=21 and by more than 1 dB for B=7 as compared with the Hamming window. The obtained results allow concluding that the optimization problem for the window function parameters in the case of small values of the pulse duration-bandwidth product should be solved individually for each specific value of B. Most likely it would be impossible to obtain the extremely low sidelobe level; however, a certain improvement of the characteristics of the chirp-pulse compression filter seems quite possible.
Citation
Volodymyr G. Galushko, "On Application of Taper Windows for Sidelobe Suppression in LFM Pulse Compression," Progress In Electromagnetics Research C, Vol. 107, 259-271, 2021.
doi:10.2528/PIERC20081904
References

1. Cook, C. E. and M. Bernfeld, Radar Signals: An Introduction to Theory and Application, Academic Press, 1967.

2. Barton, D. K., Radar System Analysis and Modeling, Artech House Publishers, 2004.

3. Ducoff, M. R. and B. W. Tietjen, "Pulse compression radar," Radar Handbook, M. I. Skolnik, ed., 8.1–8.44, McGraw-Hill Companies, New York, 2008.

4. Levanon, N. and E. Mozeson, Radar Signals, John Wiley & Sons, Inc., 2004.
doi:10.1002/0471663085

5. Doerry, A. W., Catalog of Window Taper Functions for Sidelobe Control, Technical Report SAND2017-4042, Sandia National Labs., Albuquerque, New Mexico and Livermore, California, USA, 2017, DOI: 10.2172/1365510.

6. Tiwari, D. and S. S. Bhadauria, "Reduction in sidelobe and SNR improves by using digital pulse compression technique," Int. J. Adv. Res. Sci. Eng., Vol. 6, No. 7, 1056-1063, 2017.

7. Kowatsch, M. and H. R. Stocker, "Effect of Fresnel ripples on sidelobe suppression in low time-bandwidth product linear FM pulse compression," IEE Proc. F — Radar and Signal Processing, Vol. 129, No. 1, 41-44, 1982, DOI: 10.1049/ip-f-1.1982.0007.
doi:10.1049/ip-f-1.1982.0007

8. Rodionov, V. V., V. M. Rukavishnikov, Y. V. Filonov, E. A. Nikitin, M. A. Shilman, and V. N. Chesnov, Method of radar signal processing, Russian Federation Patent No. 2212683, 2001.

9. Maurice, R. D. A., Convolution and Fourier Transforms for Communications Engineers, Pentech Press Ltd., 1976.

10. Reklaitis, G. V., A. Ravindranand, and K. M. Ragsdell, Engineering Optimization. Methods and Applications, John Wiley & Sons, Inc., 1983.