1. Mie, G., "Beitrage zur optik truber medien, speziell kolloidaler metallosungen," Annalen der Physik, Vol. 330, No. 3, 377-445, 1908.
doi:10.1002/andp.19083300302
2. Yoon, T.-J., K. N. Yu, E. Kim, J. S. Kim, B. G. Kim, S.-H. Yun, B.-H. Sohn, M.-H. Cho, J.- K. Lee, and S. B. Park, "Specific targeting, cell sorting, and bioimaging with smart magnetic silica core-shell nanomaterials," Small, Vol. 2, No. 2, 209-215, 2006.
doi:10.1002/smll.200500360
3. Chen, G., J. Shen, T. Y. Ohulchanskyy, N. J. Patel, A. Kutikov, Z. Li, J. Song, R. K. Pandey, H. Agren, P. N. Prasad, et al. "(α-naybf4: Tm3+)/caf2 core/shell nanoparticles with efficient nearinfrared to near-infrared upconversion for high-contrast deep tissue bioimaging," ACS Nano, Vol. 6, No. 9, 8280-8287, 2012.
doi:10.1021/nn302972r
4. Feng, H. Y., F. Luo, D. Meneses-Rodrıguez, G. Armelles, and A. Cebollada, "From disk to ring: Aspect ratio control of the magnetoplasmonic response in Au/Co/Au nanostructures fabricated by hole-mask colloidal lithography," Applied Physics Letters, Vol. 106, No. 8, 083105, 2015.
doi:10.1063/1.4913621
5. Zayats, A. V. and I. I. Smolyaninov, "Near-field photonics: Surface plasmon polaritons and localized surface plasmons," Journal of Optics A: Pure and Applied Optics, Vol. 5, No. 4, S16, 2003.
doi:10.1088/1464-4258/5/4/353
6. Atwater, H. A. and A. Polman, "Plasmonics for improved photovoltaic devices," Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group, 1-11, World Scientific, 2011.
7. Anker, J. N., W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, "Biosensing with plasmonic nanosensors," Nanoscience and Technology: A Collection of Reviews from Nature Journals, 308-319, World Scientific, 2010.
8. Pande, S., S. K. Ghosh, S. Praharaj, S. Panigrahi, S. Basu, S. Jana, A. Pal, T. Tsukuda, and T. Pal, "Synthesis of normal and inverted gold-silver coreshell architectures in β-cyclodextrin and their applications in sers," The Journal of Physical Chemistry C, Vol. 111, No. 29, 10806-10813, 2007.
doi:10.1021/jp0702393
9. Kim, J., H. S. Kim, N. Lee, T. Kim, H. Kim, T. Yu, I. C. Song, W. K. Moon, and T. Hyeon, "Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery," Angewandte Chemie International Edition, Vol. 47, No. 44, 8438-8441, 2008.
doi:10.1002/anie.200802469
10. Lee, K.-S. and M. A. El-Sayed, "Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition," The Journal of Physical Chemistry B, Vol. 110, No. 39, 19220-19225, 2006.
doi:10.1021/jp062536y
11. Liedberg, B., C. Nylander, and I. Lunstrom, "Surface plasmon resonance for gas detection and biosensing," Sensors and Actuators, Vol. 4, 299-304, 1983.
doi:10.1016/0250-6874(83)85036-7
12. Verbruggen, S. W., M. Keulemans, J. A. Martens, and S. Lenaerts, "Predicting the surface plasmon resonance wavelength of gold-silver alloy nanoparticles," The Journal of Physical Chemistry C, Vol. 117, No. 37, 19142-19145, 2013.
doi:10.1021/jp4070856
13. Ali, A., Q. A. Naqvi, and M. A. Baqir, "Investigation of the plasmon resonance of core-shell nanoparticle in the near-infrared region," Journal of Electromagnetic Waves and Applications, Vol. 33, No. 18, 2462-2475, 2019.
doi:10.1080/09205071.2019.1685008
14. Mohapatra, S., Y. Mishra, D. Avasthi, D. Kabiraj, J. Ghatak, and S. Varma, "Synthesis of goldsilicon core-shell nanoparticles with tunable localized surface plasmon resonance," Applied Physics Letters, Vol. 92, No. 10, 103105, 2008.
doi:10.1063/1.2894187
15. Gerislioglu, B., A. Ahmadivand, and N. Pala, Optothermally controlled charge transfer plasmons in Au-Ge2Sb2Te5 core-shell assemblies, arXiv preprint arXiv:1712.01092, 2017.
16. Sukhorukov, V. L., G. Meedt, M. Kurschner, and U. Zimmermann, "A single-shell model for biological cells extended to account for the dielectric anisotropy of the plasma membrane," Journal of Electrostatics, Vol. 50, No. 3, 191-204, 2001.
doi:10.1016/S0304-3886(00)00037-1
17. Ambjornsson, T., G. Mukhopadhyay, S. P. Apell, and M. Kall, "Resonant coupling between localized plasmons and anisotropic molecular coatings in ellipsoidal metal nanoparticles," Physical Review B, Vol. 73, No. 8, 085412, 2006.
doi:10.1103/PhysRevB.73.085412
18. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, No. 5781, 1780-1782, 2006.
doi:10.1126/science.1125907
19. Gao, L., T. Fung, K. Yu, and C. Qiu, "Electromagnetic transparency by coated spheres with radial anisotropy," Physical Review E, Vol. 78, No. 4, 046609, 2008.
doi:10.1103/PhysRevE.78.046609
20. Ni, Y., L. Gao, A. Miroshnichenko, and C. Qiu, "Controlling light scattering and polarization by spherical particles with radial anisotropy," Optics Express, Vol. 21, No. 7, 8091-8100, 2013.
doi:10.1364/OE.21.008091
21. Nisar, M. and Q. A. Naqvi, "Cloaking and magnifying using radial anisotropy in non-integer dimensional space," Physics Letters A, Vol. 382, No. 31, 2055-2060, 2018.
doi:10.1016/j.physleta.2018.05.018
22. Wallen, H., H. Kettunen, and A. Sihvola, "Anomalous absorption, plasmonic resonances, and invisibility of radially anisotropic spheres," Radio Science, Vol. 50, No. 1, 18-28, 2015.
doi:10.1002/2014RS005534
23. Kettunen, H., H. Wallen, and A. Sihvola, "Cloaking and magnifying using radial anisotropy," Journal of Applied Physics, Vol. 114, No. 4, 044110, 2013.
doi:10.1063/1.4816797
24. Liu, H.-Z., J. L.-W. Li, M. S. Leong, and S. Zouhdi, "Transparent uniaxial anisotropic spherical particles designed using radial anisotropy," Physical Review E, Vol. 84, No. 1, 016605, 2011.
doi:10.1103/PhysRevE.84.016605
25. Chen, H. and L. Gao, "Tunablity of the unconventional fano resonances in coated nanowires with radial anisotropy," Optics Express, Vol. 21, No. 20, 23619-23630, 2013.
doi:10.1364/OE.21.023619
26. Reshetnyak, V. Y., I. P. Pinkevych, T. J. Sluckin, and D. R. Evans, "Cloaking by shells with radially inhomogeneous anisotropic permittivity," Optics Express, Vol. 24, No. 2, A21-A32, 2016.
doi:10.1364/OE.24.000A21
27. Sihvola, A. and I. V. Lindell, "Transmission line analogy for calculating the effective permittivity of mixtures with spherical multilayer scatterers," Journal of Electromagnetic Waves and Applications, Vol. 2, No. 8, 741-756, 1988.
28. Barchiesi, D. and T. Grosges, "Fitting the optical constants of gold, silver, chromium, titanium, and aluminum in the visible bandwidth," Journal of Nanophotonics, Vol. 8, No. 1, 083097, 2014.
doi:10.1117/1.JNP.8.083097
29. Rakic, A. D., A. B. Djurisic, J. M. Elazar, and M. L. Majewski, "Optical properties of metallic films for vertical-cavity optoelectronic devices," Applied Optics, Vol. 37, No. 22, 5271-5283, 1998.
doi:10.1364/AO.37.005271
30. Kettunen, H., H. Wallen, and A. Sihvola, "Tailoring effective media by mie resonances of radially-anisotropic cylinders," Photonics, Vol. 2, 509-526, Multidisciplinary Digital Publishing Institute, 2015.