Vol. 104
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-07-23
A Compact Quad Port Band-Notched MIMO Antenna for Wi-MAX Applications with Low Mutual Coupling
By
Progress In Electromagnetics Research C, Vol. 104, 53-67, 2020
Abstract
High data rates and good channel bandwidth are some of the requirements of today's wireless communication systems. The wireless communication systems are now rapidly adopting a Multiple Input Multiple Output i.e MIMO technique due to its advantages such as the data rates and bandwidth. The main focus of this paper is to design a highly isolated MIMO antenna with Wi-MAX bandwidth. This MIMO antenna design is prepared with four pentagonal slotted monopole antennas with a parasitic element structure operating in the band of 5.1 to 5.8 GHz which offers isolation more than 28 dB. Rectangular slots are used for each radiating patch for a band-notched frequency at 5.5 GHz frequency relative to the Wi-MAX frequency band. To improve the isolation of the antenna, on the surface of the dielectric substrate, a single plus-shaped parasitic structure is uniformly inserted between the antenna elements. The result obtained from the fabricated antenna is at an acceptable range with that of the simulated for the Wi-MAX band applications.
Citation
Bhakti Vinod Nikam, and Maruti R. Jadhav, "A Compact Quad Port Band-Notched MIMO Antenna for Wi-MAX Applications with Low Mutual Coupling," Progress In Electromagnetics Research C, Vol. 104, 53-67, 2020.
doi:10.2528/PIERC20060602
References

1. Cheng, C.-M., et al., "Four antennas on smart watch for GPS/UMTS/ WLAN MIMO application," IEEE Intl. Conf. on Comp. Electromagn. (ICCEM), Vol. 2017, 346-348, IEEE, Kumamoto, Japan, 2017.

2. Li, Q., et al., "MIMO techniques in WiMAX and LTE: A feature overview," IEEE Commun. Mag., Vol. 48, No. 5, 8692, 2010.
doi:10.1109/MCOM.2010.5458368

3. Azarm, B., Ch. Ghobadi, et al. "A compact WiMAX band-notched UWB MIMO antenna with high isolation," Radioengineering, Vol. 27, No. 4, 983989, 2018.
doi:10.13164/re.2018.0983

4. Quddus, A., et al., "Compact electronically reconfigurable WiMAX band-notched ultra-wideband MIMO antenna," Radioengineering, Vol. 27, No. 4, 9981005, 2018.
doi:10.13164/re.2018.0998

5. Kamonsin, W., et al., "Dual-band metamaterial based on Jerusalem cross structure with interdigital technique for LTE and WLAN systems," IEEE Access, Vol. 8, 21565-21572, 2020.
doi:10.1109/ACCESS.2020.2968563

6. Brown, A. K., et al., "Compact reconfigurable multiple-input-multiple-output antenna for ultra wideband applications," IET Microw. Antennas Propag., Vol. 10, No. 4, 413-419, 2016.
doi:10.1049/iet-map.2015.0181

7. Liu, L., et al., "Compact MIMO antenna for portable UWB applications with band-notched characteristic," IEEE Trans. Antennas Propagat., Vol. 63, No. 5, 1917-1924, 2015.
doi:10.1109/TAP.2015.2406892

8. Dissanayake, T. and K. P. Esselle, "Prediction of the Notch frequency of slot loaded printed UWB antennas," IEEE Trans. Antennas Propagat., Vol. 55, No. 11, 3320-3325, 2007.
doi:10.1109/TAP.2007.908792

9. Turitsyna, E. G. and S. Webb, "Simple design of FBG-based VSB filters for ultra-dense WDM transmission," Electron. Lett., Vol. 41, No. 2, 89, 2005.
doi:10.1049/el:20056760

10. Ojaroudi, M., et al., "Dual band-notched small monopole antenna with novel W-shaped conductor backed-plane and novel T-shaped slot for UWB applications," IET Microw. Antennas Propag., Vol. 7, No. 1, 814, 2013.
doi:10.1049/iet-map.2012.0180

11. Sipal, D., et al., "Compact band-notched UWB antenna for MIMO applications in portable wireless devices," Microw. Opt. Technol. Lett., Vol. 58, No. 6, 1390-1394, 2016.
doi:10.1002/mop.29804

12. Kang, L., et al., "Miniaturized band-notched UWB MIMO antenna with high isolation," Microw. Opt. Technol. Lett., Vol. 58, No. 4, 878-881, 2016.
doi:10.1002/mop.29691

13. Tripathi, S., et al., "A compact octagonal fractal UWB MIMO antenna with WLAN band-rejection," Microw. Opt. Technol. Lett., Vol. 57, No. 8, 1919-1925, 2015.
doi:10.1002/mop.29220

14. Tripathi, S., et al., "A compact Koch fractal UWB MIMO antenna with WLAN band-rejection," Antennas Wirel. Propag. Lett., Vol. 14, 1565-1568, 2015.
doi:10.1109/LAWP.2015.2412659

15. Naqvi, A., et al., "Compact planar UWB MIMO antenna with on-demand WLAN rejection," Electron. Lett., Vol. 51, No. 13, 963-964, 2015.
doi:10.1049/el.2015.1056

16. Kang, L., et al., "Compact offset microstrip-Fed MIMO antenna for band-notched UWB applications," Antennas Wirel. Propag. Lett., Vol. 14, 1754-1757, 2015.
doi:10.1109/LAWP.2015.2422571

17. Malekpour, N., et al., "Compact UWB MIMO antenna with band-notched characteristic," Microw. Opt. Technol. Lett., Vol. 59, No. 5, 1037-1041, 2017.
doi:10.1002/mop.30462

18. Khan, S. M., et al., "A compact four elements UWB MIMO antenna with on-demand WLAN rejection," Microw. Opt. Technol. Lett., Vol. 58, No. 2, 270-276, 2016.
doi:10.1002/mop.29546

19. Huang, H.-F. and S.-G. Xiao, "MIMO antenna with high frequency selectivity and controllable bandwidth for band-notched UWB applications," Microw. Opt. Technol. Lett., Vol. 58, No. 8, 1886-1891, 2016.
doi:10.1002/mop.29929

..
doi:10.1002/mop.29929

20. Biswal, S. P. and S. Das, "A low-profile dual port UWB-MIMO/diversity antenna with band rejection ability," Int. J. RF Microw. Comput. Aid. Eng., Vol. 28, No. 1, e21159, 2018.
doi:10.1002/mmce.21159

21. Srivastava, G. and B. K. Kanuijia, "Compact dual band-notched UWB MIMO antenna with shared radiator," Microw. Opt. Technol. Lett., Vol. 57, No. 12, 2886-2891, 2015.
doi:10.1002/mop.29459

22. Huang, H., et al., "Compact polarization diversity ultrawideband MIMO antenna with triple bandnotched characteristics," Microw. Opt. Technol. Lett., Vol. 57, No. 4, 946-953, 2015.
doi:10.1002/mop.28957

23. Bhadade, R. S. and S. P. Mahajan, "High gain circularly polarized pentagonal microstrip for massive MIMO base station," AEM, Vol. 8, No. 3, 83-91, 2019.
doi:10.7716/aem.v8i3.764

24. Viraja, B., et al., Design and Implementation of Pentagon Patch Antennas WithSlit for Multiband Wireless Applications Ls = 14431448, 2018.

25. Christina, A., J. Malathi, and D. Thiripurasundari, "Review on isolation techniques in MIMO antenna systems," Indian J. Sci. Technol., Vol. 9, No. 35, 2016.

26. Chae, S. H., et al., "Analysis of mutualcoupling, correlations, and TARC in WiBro MIMO array antenna," Antennas Wirel. Propag. Lett., Vol. 6, 122-125, 2007.
doi:10.1109/LAWP.2007.893109

27. Ibrahim, A. A. and M. A. Abdalla, "CRLH MIMO antenna with reversal configuration," AEU Int. J. Electron. Commun., Vol. 70, No. 9, 1134-1141, 2016.
doi:10.1016/j.aeue.2016.05.012

28. Browne, D. W., et al., "Experiments with compact antenna arrays for MIMO radio communications," IEEE Trans. Antennas Propagat., Vol. 54, No. 11, 3239-3250, 2006.
doi:10.1109/TAP.2006.883973

29. Manteghi, M. and Y. Rahmat-Samii, "Multiport characteristics of a wide-band cavity backed annular patch antenna for multipolarization operations," IEEE Trans. Antennas Propagat., Vol. 53, No. 1, 466-474, 2005.
doi:10.1109/TAP.2004.838794

30. Nasir, J., et al., "Throughput measurement of a dual-band MIMO rectangular dielectric resonator antenna for LTE applications," Sensors, Vol. 17, No. 1, 148, 2017.
doi:10.3390/s17010148

31. Liu, L., et al., "Cable effects on measuring small planar UWB monopole antennas ultrawideband — Curr," Status Futur Trends, 2012.