Vol. 94
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2019-07-26
Digital Beamforming in Elevation for Moving Surface Ships
By
Progress In Electromagnetics Research C, Vol. 94, 177-187, 2019
Abstract
Moving target ship imaging in large sea area has always been the focus of military and civilian attention. Due to the limitation of pulse repetition frequency (PRF), there is a contradiction between wide mapping band and azimuth accuracy. The nonlinearity of PRF can also cause discontinuity of mapping band. Therefore, this paper proposes a method of digital beamforming-scan on receiving (DBF-SCORE) beam scanning based on airborne phased array radar to achieve the requirement of scene mapping band with lower PRF. The adaptive Capon spectrum estimation is used to dynamically adjust the beam pointing so that it can always point to the moving target for accurate imaging. Considering the nonuniform sampling of the transmitting pulse period of the antenna, the azimuth nonuniform Fourier transform (NUDFT) algorithm is used to re-sample the nonuniform periodic signal of the multi-channel receiving antenna and obtain the uniform spectrum signal. Finally, fine focusing of moving target is achieved by local phase gradient algorithm (PGA) algorithm, and accurate imaging of moving target in large sea area is realized. The validity of the algorithm can be verified by simulation and real data imaging, which can be used for reference in phased array SAR imaging of moving targets.
Citation
Lin Zhang, and Yicheng Jiang, "Digital Beamforming in Elevation for Moving Surface Ships," Progress In Electromagnetics Research C, Vol. 94, 177-187, 2019.
doi:10.2528/PIERC19041204
References

1. Heimmer, J., "Multi-mission phased array radar (MPAR) national radar R&D project," Systems, Applications & Technology Conference, 1-2, IEEE Long Island, 2008.

2. Zhang, S. X., M. D. Xing, X. G. Xia, et al. "Multichannel HRWS SAR imaging based on range-variant channel calibration and multi-Doppler-direction restriction ambiguity suppression," IEEE Transactions on Geoscience and Remote Sensing, Vol. 52, No. 7, 4306-4327, 2014.
doi:10.1109/TGRS.2013.2281329

3. Reigber, A., A. Nottensteiner, M. Limbach, et al. "DBFSAR: An airborne very high-resolution digital beamforming SAR system," Proceedings of the 14th European Radar Conference, 175-178, Nuremberg, Germany, Oct. 2017.

4. Sikaneta, I. and D. Cerutti-Maori, "Demonstrations of HRWS and GMTI with RADARSAT-2," European Conference on Synthetic Aperture Radar, 263-266, Nuremberg, Germany, Apr. 2012.

5. Reigber, A., A. Nottensteiner, M. Limbach, et al. "DBFSAR: An airborne very high-resolution digital beamforming SAR system," European Radar Conference (EuRAD), 175-178, 2017.

6. Cook, C. E. and M. Bernfeld, Radar Signal an Introduction to Theory and Application, Academic Press, 1967.

7. Capon, J., "High-resolution frequency-wavenumber spectral analysis," Proc. IEEE, Vol. 57, 1408-1418, 1969.
doi:10.1109/PROC.1969.7278

8. Zhang, C., Synthet Icaperture Radar: Theorysystem Analysis and Application, Science Press, 1989.

9. Dutt, A. and V. Rokhlin, "Fast Fourier transforms for nonequispaced data," SIAM Journal on Scientific Computing, Vol. 14, No. 6, 1368-1393, 1993.
doi:10.1137/0914081

10. Fessler, J. A. and B. P. Sutton, "Nonuniform fast Fourier transforms using min-max interpolation," IEEE Transactions on Signal Processing, Vol. 51, No. 2, 560-574, 2003.
doi:10.1109/TSP.2002.807005

11. Liu, Q. H. and N. Nguyen, "An accurate algorithm for nonuniform fast Fourier transforms (NUFFT's)," IEEE Microwave and Guided Wave Letters, Vol. 8, No. 1, 18-20, 2002.
doi:10.1109/75.650975

12. Ren, B. L., S. Y. Li, H. J. Sun, et al. "A fast circular convolution algorithm based on NUFFT for near-field SAR imaging," International Conference on Microwave & Millimeter Wave Technology, 1-4, 2012.

13. Wu, Y., H. Song, X. Shang, et al. "Improved RMA based on Nonuniform Fast Fourier Transforms (NUFFT's)," International Conference on Signal Processing, 2489-2492, 2008.

14. Zhao, X., X. L. Wang, and Z. M. Wang, "Phase gradient autofocus algorithm for SAR images based on optimal contrast criterion," Remote Sensing Technology and Application, Vol. 20, No. 6, 606-610, 2005.

15. Ye, C., X. Ning, J. Yang, et al. "Parallel implementation of a block-wise phase gradient autofocusing method," J. Tsinghua Univ. (Sci. & Tech.), Vol. 52, No. 5, 612-615, 2012.