Vol. 93
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2019-05-30
Unbalanced Metamaterials Applied to Phase Shifter: Dedicated Design Method and Application in C-Band
By
Progress In Electromagnetics Research C, Vol. 93, 1-17, 2019
Abstract
In order to design differential phase shifters (DPS) from metamaterial-based transmission lines, research had a long tradition of usingbalanced transmission lines which are a particular case of metamaterials, specifically characterized byasimplified equivalent circuit model. This paper presents an innovative way of designing DPS metamaterials by exploiting metamaterial properties more widely, using both balanced and unbalanced cases to obtain a broader set of solutions. These solutions are acquired through the dedicated method this paper expounds, and conceived with the help of a new use of metamaterials. For the sake of ensuring time efficiency and implementation easiness of this design method for industrial purpose, the full wave parametric optimization is reduced to its minimum by exploiting as much as possible in analytic parametric study. This method is illustrated by an application of 180° DPS on C-Band (5-6 GHz). Three prototypes were fabricated, and the measurements show that the best case of DPS has less than 9° of phase error over the targeted 20% bandwidth, with a return loss less than -14 dB and insertion losses lower than 1 dB.
Citation
Jonathan Vivos, Thomas Crepin, Michel-François Foulon, and Jérôme Sokoloff, "Unbalanced Metamaterials Applied to Phase Shifter: Dedicated Design Method and Application in C-Band," Progress In Electromagnetics Research C, Vol. 93, 1-17, 2019.
doi:10.2528/PIERC19021302
References

1. Schiffman, , B. M., "A new class of broad-band microwave 90-degree phase shifters," IRE Transactions on Microwave Theory and Techniques, Vol. 6, No. 2, 232-237, Apr. 1958.
doi:10.1109/TMTT.1958.1124543

2. Ellinger, F., H. Jackel, and W. Bachtold, "Varactor-loaded transmission-line phase shifter at C-band using lumped elements," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 4, 1135-1140, Apr. 2003.
doi:10.1109/TMTT.2003.809670

3. Lin, Y. W., Y. C. Chou, and C. Y. Chang, "A balanced digital phase shifter by a novel switching-mode topology," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 6, 2361-2370, Jun. 2013.
doi:10.1109/TMTT.2013.2258170

4. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekhi, Vol. 10, No. 4, 509-514, Jan.–Feb. 1968.
doi:10.1070/PU1968v010n04ABEH003699

5. Caloz, C. and T. Itoh, "TL theory of MTMs," Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, 59-132, Wiley, Nov. 2005.

6. Eleftheriades, G. V. and K. G. Balmain, "Negative-refractive-index transmission-line metamaterials," Negative-Refraction Metamaterials — Fundamental Principles and Applications, 1-48, Wiley, Aug. 2005.

7. Zvolensky, T., J. Ala-Laurinaho, C. R. Simovski, and A. V. Raisanen, "A systematic design method for CRLH periodic structures in the microwave to millimeter-wave range," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 8, 4153-4161, Aug. 2014.
doi:10.1109/TAP.2014.2324562

8. Chi, P.-L. and T. Itoh, "Miniaturized dual-band directional couplers using composite right/left-handed transmission structures and their applications in beam pattern diversity systems," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, No. 5, 1207-1215, May 2009.
doi:10.1109/TMTT.2009.2017350

9. Antoniades, M. A. and G. V. Eleftheriades, "Compact linear lead/lag metamaterial phase shifters for broadband applications," IEEE Antennas and Wireless Propagation Letters, Vol. 2, No. 1, 103-106, 2003.
doi:10.1109/LAWP.2003.815280

10. Church, J., J. Meloling, and J. D. Rockway, "Equal phase slope metamaterial transmission lines," 2012 IEEE Antennas and Propagation Society International Symposium (APSURSI), 1-2, Nov. 2012.

11. Siso, G., M. Gil, J. Bonache, and F. Martin, "Application of metamaterial transmission lines to design of quadrature phase shifters," Electronics Letters, Vol. 43, No. 20, 1098-1100, Sep. 2007.
doi:10.1049/el:20071755

12. Qamar, Z., S. Y. Zheng, W. S. Chan, and D. Ho, "An equal-length multiway differential metamaterial phase shifter," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 1, 136-146, 2017.
doi:10.1109/TMTT.2016.2614932

13. Collin, R. E., "Periodic structures and filters," Foudations for Microwave Engineering, 550-559, Wiley, 2000.

14. Vivos, J., T. Crepin, M. F. Foulon, and J. Sokoloff, "Design method of CRLH TL inspired phase shifters," 2016 10th European Conference on Antennas and Propagation (EuCAP), 2016.

15. Bahl, I. and P. Bhartia, "Transmission line theory," Microwave Solid State Circuit Design, Ch. 2, 12-21, 45–57, Wiley, 1988.

16. Bahl, I., Lumped Elements for RF and Microwave Circuits, 17-161, 163–251, Artech House, Apr. 2002.