Vol. 94
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2019-08-05
Detection and Localization of an Object Behind Wall Using an Inverse Scattering Technique with Wall Direct Subtraction Method
By
Progress In Electromagnetics Research C, Vol. 94, 247-259, 2019
Abstract
Through-wall imaging (TWI) is one of the useful applications nowadays in microwave tomography field. Reconstructing image of an object becomes more challenging when it is obscured by walls. In practice, the inclusions of noise worsen the reconstruction results. In this paper, Forward-Backward Time-Stepping (FBTS) in time inversion technique is utilized and integrated with Wall Direct Subtraction (WDS) method to reconstruct unknown object behind walls. The investigation includes two types of walls that are homogeneous and heterogeneous. The object is surrounded by closed walls. With noise added in the setup, Singular Value Decomposition (SVD) and Savitzky-Golay (SG) filtering method are used to eliminate the noise and enhance the reconstructed image of an object. The results show that WDS integrated with FBTS has successfully mitigating wall clutter from both homogeneous and heterogeneous walls, and also improves image reconstruction of a hidden object. Further, by using the proposed noise reduction method, lower MSE values can be achieved.
Citation
Mohamad Faizal Mahsen, Kismet Anak Hong Ping, and Shafrida Sahrani, "Detection and Localization of an Object Behind Wall Using an Inverse Scattering Technique with Wall Direct Subtraction Method," Progress In Electromagnetics Research C, Vol. 94, 247-259, 2019.
doi:10.2528/PIERC19010701
References

1. Yoon, Y. and M. G. Amin, "Spatial filtering for wall-clutter mitigation in through-the-wall radar imaging," IEEE Trans. Geosci. Remote Sens., Vol. 47, No. 9, 3192-3208, 2009.
doi:10.1109/TGRS.2009.2019728

2. Baranoski, E. J. and N. F. Drive, "Through wall imaging: Historical perspective and future directions," J. Franklin Inst., Vol. 345, No. 6, 556-569, 2008.
doi:10.1016/j.jfranklin.2008.01.005

3. Salvador, S. M., E. C. Fear, M. Okoniewski, and J. R. Matyas, "Exploring joint tissues with microwave imaging," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 8, 2307-2313, 2010.
doi:10.1109/TMTT.2010.2052662

4. Wentworth, S. M., Fundamentals of Electromagnetics with Engineering Applications, John Wiley & Sons, Inc., 2005.

5. Syahrim, N. and N. Anwar, "Multiple line cracks in concrete material," Int. J. Hum. Technol. Interact., Vol. 2, October 2018.

6. Hong Ping, K. A., T. Moriyama, T. Takenaka, and T. Tanaka, "Reconstruction of breast composition in a free space utilizing 2-D forward-backward time-stepping for breast cancer detection," 4th lET Intematioal Conf. Adv. Medical, Signal Inf. Process. 2008 (MEDSIP 2008), 1-4, 2008.

7. Hong, K. A., T. Moriyama, T. Takenaka, and T. Tanaka, "Two-dimensional forward-backward time-stepping approach for tumor detection in dispersive breast tissues," Microw. Symp. (MMS), 2009 Mediterr., 2009.

8. Kaushal, S. and D. Singh, "Sensitivity analysis of microwave UWB radar for TWI system," Int. J. Appl. Eng. Res., Vol. 12, No. 19, 8665-8675, 2017.

9. Solimene, R., F. Soldovieri, G. Prisco, and R. Pierri, "Three-dimensional through-wall imaging under ambiguous wall parameters," IEEE Trans. Geosci. Remote Sens., Vol. 47, No. 5, 1310-1317, 2009.

10. Gaikwad, A. N., D. Singh, and M. J. Nigam, "Application of clutter reduction techniques for detection of metallic and low dielectric target behind the brick wall by stepped frequency continuous wave radar in ultra-wideband range," IET Radar, Sonar Navig., Vol. 5, 416-425, 2011.

11. Soldovieri, F. and R. Solimene, "Through-wall imaging via a linear inverse scattering algorithm," IEEE Geosci. Remote Sens. Lett., Vol. 4, No. 4, 513-517, 2007.

12. Dehmollaian, M. and K. Sarabandi, "Refocusing through building walls using synthetic aperture radar," IEEE Trans. Geosci. Remote Sens., Vol. 46, No. 6, 1589-1599, 2008.

13. Ahmad, F., S. Member, M. G. Amin, and G. Mandapati, "Autofocusing of through-the-wall radar imagery under unknown wall characteristics," IEEE Trans. Signal Process., Vol. 16, No. 7, 1785-1795, 2007.

14. Paknys, R., "Reflection and transmission by reinforced concrete — Numerical and asymptotic analysis," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 2852-2861, 2003.

15. Liang, F., et al. "Through the wall imaging of human vital signs based on UWB MIMO bioradar," Progress In Electromagnetics Research C, Vol. 87, 119-133, 2018.

16. Jia, S., L. Kong, and Y. Jia, "A new approach for target localization of through-the-wall radar with unknown walls," IEEE Natl. Radar Conf. — Proc., No. 3, 7-10, 2009.

17. Gennarelli, G. and F. Soldovieri, "Radar imaging through cinderblock walls: Achievable performance by a model-corrected linear inverse scattering approach," IEEE Trans. Geosci. Remote Sens., Vol. 52, No. 10, 6738-6749, 2014.

18. Burkholder, R. J., R. J. Marhefka, and J. L. Volakis, "Radar imaging through cinder block walls and other periodic structures," 2008 IEEE Antennas Propag. Soc. Int. Symp., 3-6, 2008.

19. Turk, A. S., K. A. Hocaoglu, and A. A. Vertiy, Subsurface Sensing, Volume 197 of Wiley Series in Microwave and Optical Engineering, John Wiley & Sons, 2011.

20. Yemelyanov, K. M., N. Engheta, A. Hoorfar, and J. A. Mcvay, "Adaptive polarization contrast techniques for through-wall microwave imaging applications," IEEE Trans. Geosci. Remote Sens., Vol. 47, No. 5, 1362-1374, 2009.

21. Pierri, R., A. Liseno, R. Solimene, and F. Soldovieri, "Beyond physical optics SVD shape reconstruction of metallic cylinders," IEEE Trans. Antennas Propag., Vol. 54, No. 2, 655-665, 2006.

22. Zhong, W. and C. Tong, "A novel near field imaging approach for through-wall imaging," Cross Strait Quad-Regional Radio Sci. Wirel. Technol. Conf., 164-167, 2011.

23. Miao, Z. and P. Kosmas, "Compact of information loss on reconstruction quality in microwave tomography for medical imaging," Diagnostics, Vol. 8, No. 52, 1-15, 2018.

24. Jin, T., B. Chen, and Z. Zhou, "Image-domain estimation of wall parameters for autofocusing of through-the-wall SAR imagery," IEEE Trans. Geosci. Remote Sens., Vol. 51, No. 3, 1836-1843, 2013.

25. Liseno, A., F. Soldovieri, and R. Pierri, "Improving a shape reconstruction algorithm with thresholds and multi-view data," AEU — Int. J. Electron. Commun., Vol. 58, No. 2, 118-124, 2004.

26. Riaz, M. M. and A. Ghafoor, "Wavelet transform and singular value decomposition based clutter reduction for through wall imaging," Radar Conf. IET Int., 2013.

27. Tivive, F. H. C., M. G. Amin, and A. Bouzerdoum, "Wall clutter mitigation based on eigen-analysis in through-the-wall radar imaging," 17th DSP 2011 Int. Conf. Digit. Signal Process. Proc., 1-8, 2011.

28. Gorji, A. B. and B. Zakeri, "An improved time-reversal-based target localization for through-wall microwave imaging," J. Electr. Comput. Eng. Innov. JECEI Regul. Pap. 89 J. Elec. Comput. Eng. Innov., Vol. 1, No. 2, 89-97, 2013.

29. Zheng, W., Z. Zhao, and Z. Nie, "Application of TRM in the UWB through wall radar," Progress In Electromagnetics Research, Vol. 87, 279-296, 2008.

30. Cresp, A., I. Aliferis, M. Yedlin, C. Pichot, and J. Dauvignac, "Investigation of time-reversal processing for surface-penetrating radar detection in a multiple-target configuration," Proc. 5th Eur. Radar Conf. Amsterdam, Netherlands, 144-247, 2008.

31. Wu, H. and J. Barba, "Minimum entropy restoration of star field images," IEEE Trans. Syst. Man, Cybern. B Cybern., Vol. 28, No. 2, 227-231, 1998.

32. Solimene, R., A. Cuccaro, R. Pierri, and I. Industriale, "A clutter rejection based on entropy in TWI," 7th Eur. Conf. Antennas Propag., 2175-2178, 2013.

33. Li, L., W. Zhang, and F. Li, "A novel autofocusing approach for real-time through-wall imaging under unknown wall characteristics," IEEE Trans. Geosci. Remote Sens., Vol. 48, No. 1, 423-431, 2010.

34. Muqaibel, A. H., N. M. Iya, and U. M. Johar, "Wall compensation for ultra wideband applications," Radioengineering, Vol. 21, No. 2, 640-646, 2012.

35. Elizabeth, M. A. P., et al., "2-D reconstruction of breast image using forward-backward time-stepping method for breast tumour detection," IEEE Asia-Pacific Conf. Appl. Electromagn. (APACE 2012), No. Apace, 70-73, 2012.

36. Nawawi, J., S. Sahrani, K. Anak, and H. Ping, "Automated scaling region of interest with iterative edge preserving in forward-backward time-stepping," Progress In Electromagnetics Research, Vol. 67, 177-188, 2018.

37. Joseph, E. J., et al., "Integration of image segmentation method in inverse scattering for brain tumour detection," Progress In Electromagnetics Research, Vol. 61, 111-122, 2017.

38. Ping, K. H., S. W. Ng, G. Yong, and N. Rajaee, "Elliptic filter and iterative inversion method for buried object detection applications," Applied Mechanics and Materials, Vol. 833, 164-169, 2016.

39. Elizabeth, M. A. P., K. A. Hong Ping, N. B. Rajaee, and T. Moriyama, "Chebyshev filter applied to an inversion technique for breast tumour detection," Int. J. Res. Eng. Technol., Vol. 4, No. 5, 1-9, 2015.

40. Yong, G., K. A. H. Ping, S. Sahrani, M. H. Marhaban, M. I. Sariphn, T. Moriyama, and T. Takenaka, "Profile reconstruction utilizing forward-backward time-stepping with the integration of automated edge-preserving regularization technique for object detection applications," Progress In Electromagnetics Research M, Vol. 54, 125-135, 2017.

41. Jamali, N. H., K. Anak, H. Ping, and S. Sahrani, "Image reconstruction based on combination of inverse scattering technique and total variation regularization method," Indonesian Journal of Electrical Engineering and Computer Science, Vol. 5, No. 3, 569-576, 2017.

42. Xu, K., Y. Zhong, X. Chen, and D. Lesselier, "A fast integral equation based method for solving electromagnetic inverse scattering problems with inhomogeneous background," IEEE Trans. Antennas Propag., Vol. 66, No. 8, 4228-4239, 2018.

43. Zehtabian, A. and H. Hassanpour, "A non-destructive approach for noise reduction in time domain," World Appl. Sci. J., Vol. 6, No. 1, 53-63, 2009.

44. Gorji, A. B. and B. Zakeri, "Time-reversal through-wall microwave imaging in rich scattering environment based on target initial reflection method time-reversal through-wall microwave imaging in rich scattering," Appl. Comput. Electromagn. Soc. J., Vol. 30, 625-637, June 2015.

45. Tivive, F. H. C., A. Bouzerdoum, and M. G. Amin, "An SVD-based approach for mitigating wall reflections in through-the-wall radar imaging," IEEE Natl. Radar Conf. — Proc., No. 2, 519-524, 2011.

46. Gander, W. and V. von Matt, "Smoothing filters," Solving Problems in Scientific Computing Using Maple and MATLAB, 135-154, Springer, 1997.

47. Schafer, R. W., "What is a Savitzky-Golay filter," IEEE Signal Processing Magazine, 111-117, 2011.

48. Selesnick, I., J. Rizzo, J. Rucker, and T. Hudson, "A nonlinear generalization of the Savitzky-Golay filter and the quantitative analysis of saccades," J. Vis., Vol. 9, 1-15, 2017.

49. Liu, Y., B. Dang, Y. Li, H. Lin, and H. Ma, "Applications of Savitzky-Golay filter for seismic random noise reduction," Acta Geophys., Vol. 64, No. 1, 101-124, 2016.