1. Maqsood, M., S. Gao, T. W. C. Brown, M. Unwin, R. De Vos Van Steenwijk, and J. D. Xu, "A compact multipath mitigating ground plane for multiband GNSS antennas," IEEE Trans. Antennas Propag., Vol. 61, 2775-2782, 2013.
doi:10.1109/TAP.2013.2243692
2. Ram Krishna, R. V. S., R. Kumar, and N. Kushwaha, "A circularly polarized slot antenna for high gain applications," Int. J. Electron. Commun. (AEU), Vol. 68, 1119-1128, 2014.
doi:10.1016/j.aeue.2014.05.018
3. Kushwaha, N. and R. Kumar, "Design of a wideband high gain antenna using FSS for circularly polarized applications," Int. J. Electron. Commun. (AEU), Vol. 70, 1156-1163, 2016.
doi:10.1016/j.aeue.2016.05.013
4. Vaid, S. and A. Mittal, "High gain planar resonant cavity antennas based on metamaterial and frequency selective surfaces," Int. J. Electron. Commun. (AEU), Vol. 69, 1387-1392, 2015.
doi:10.1016/j.aeue.2015.05.014
5. Diblanc, M., E. Rodes, E. Arnaud, M. Thevenot, T. Monediere, and B. Jecko, "Circularly polarized metallic EBG antenna," IEEE Microw. Wirel. Compon. Lett., Vol. 15, 638-640, 2005.
doi:10.1109/LMWC.2005.856689
6. Arnaud, E., R. Chantalat, M. Koubeissi, T. Monediere, E. Rodes, and M. Thevenot, "Global design of an EBG antenna and meander-line polarizer for circular polarization," IEEE Antennas Wirel. Propag. Lett., Vol. 9, 215-218, 2010.
doi:10.1109/LAWP.2010.2045098
7. Chiu, S.-C. and S.-Y. Chen, "High-gain circularly polarized resonant cavity antenna using FSS superstrate," IEEE Int. Symposium Antennas Propag. Society (APSURSI), 2242-2245, 2011.
8. Chiu, S.-C. and S.-Y. Chen, "Circularly polarized resonant cavity antenna using single-layer double-sided FSS superstrate," IEEE Int. Symposium Antennas Propag. Society (APSURSI), 1-2, 2012.
9. Ma, X., C. Huang, M. Pu, C. Hu, Q. Feng, and X. Luo, "Single-layer circular polarizer using metamaterial and its application in antenna," Microw. Opt. Technol. Lett., Vol. 54, 1770-1774, 2012.
doi:10.1002/mop.26884
10. Orr, R., G. Goussetis, and V. Fusco, "Design method for circularly polarized Fabry-Perot cavity antennas," IEEE Trans. Antennas Propag., Vol. 62, 19-26, 2013.
doi:10.1109/TAP.2013.2286839
11. Liu, Z.-G., Z.-X. Cao, and L.-N. Wu, "Compact low-profile circularly polarized Fabry-Perot resonator antenna fed by linearly polarized microstrip patch," IEEE Antennas Wirel. Propag. Lett., Vol. 15, 524-527, 2016.
doi:10.1109/LAWP.2015.2456886
12. Muhammad, S. A., R. Sauleau, G. Valerio, L. Le Coq, and H. Legay, "Self-polarizing Fabry-Perot antennas based on polarization twisting element," IEEE Trans. Antennas Propag., Vol. 61, 1032-1040, 2013.
doi:10.1109/TAP.2012.2227443
13. Lee, D. H., Y. J. Lee, J. Yeo, R. Mittra, and P. Wee Sang, "Directivity enhancement of circular polarized patch antenna using ring-shaped frequency selective surface superstrate," Microw. Opt. Technol. Lett., Vol. 49, 199-201, 2007.
doi:10.1002/mop.22084
14. Vaidya, A. R., R. K. Gupta, S. K. Mishra, and J. Mukherjee, "Right-hand/left-hand circularly polarized high-gain antennas using partially reflective surfaces," IEEE Antennas Wirel. Propag. Lett., Vol. 13, 431-434, 2014.
doi:10.1109/LAWP.2014.2308926
15. Ju, J. and D. Kim, "Circularly-polarised high gain cavity antenna based on sequentially rotated phase feeding," Electron. Lett., Vol. 49, 1198-1200, 2013.
doi:10.1049/el.2013.1543
16. Cao, T., Y. Li, X. Zhang, and Y. Zou, "Theoretical study of tunable chirality from graphene integrated achiral metasurfaces," Photonics Research, Vol. 5, No. 5, 441-449, 2017.
doi:10.1364/PRJ.5.000441
17. Cao, T., C. Wei, and Y. Li, "Dual-band strong extrinsic 2D chirality in a highly symmetric metal-dielectric-metal achiral metasurface," Optical Materials Express, Vol. 6, 303-311, 2016.
doi:10.1364/OME.6.000303
18. Cao, T., C. Wei, L. B. Mao, and S. Wang, "Tuning of giant 2D-chiroptical response using achiral metasurface integrated with graphene," Optics Express, Vol. 23, 18620-18629, 2015.
doi:10.1364/OE.23.018620
19. Cao, T., C. Wei, L. B. Mao, and Y. Li, "Extrinsic 2D chirality: Giant circular conversion dichroism from a metal-dielectric-metal square array," Scientific Reports, Vol. 4, 7442, 2014.
20. Cao, T., C. Wei, and L. Zhang, "Modeling of multi-band circular dichroism using metal/dielectric/metal achiral metamaterials," Optical Materials Express, Vol. 4, 1526-1534, 2014.
doi:10.1364/OME.4.001526
21. Cao, T. and M. J. Cryan, "Enhancement of circular dichroism by a planar non-chiral magnetic metamaterial," Journal of Optics, Vol. 14, 085101, 2012.
doi:10.1088/2040-8978/14/8/085101
22. Wang, N., Q. Liu, C. Wu, L. Talbi, Q. Zeng, and J. Xu, "Wideband Fabry-Perot resonator antenna with two complementary FSS layers," IEEE Trans. Antennas Propag., Vol. 62, 2463-2471, 2014.
doi:10.1109/TAP.2014.2308533
23. Ge, Y., K. P. Esselle, and T. S. Bird, "The use of simple thin partially reflective surfaces with positive reflection phase gradients to design wideband, low-profile EBG resonator antennas," IEEE Trans. Antennas Propag., Vol. 60, 743-750, 2012.
doi:10.1109/TAP.2011.2173113
24. Qin, F., S. Gao, G. Wei, Q. Luo, C. Mao, C. Gu, J. Xu, and J. Li, "Wideband circularly polarized Fabry-Perot antenna," IEEE Antennas Propag. Magazine, Vol. 57, 127-135, 2015.
doi:10.1109/MAP.2015.2470678
25. Vaid, S. and A. Mittal, "Wideband orthogonally polarized resonant cavity antenna with dual layer jerusalem cross partially reflective surface," Progress In Electromagnetics Research C, Vol. 72, 105-113, 2017.
doi:10.2528/PIERC17011103
26. Costa, F., A. Monorchio, and G. Manara, "Efficient analysis of frequency-selective surfaces by a simple equivalent-circuit model," IEEE Antennas Propag. Magazine, Vol. 54, 35-48, 2012.
doi:10.1109/MAP.2012.6309153
27. Hosseini, M. and M. Hakkak, "Characteristics estimation for Jerusalem cross-based artificial magnetic conductors," IEEE Antennas Wirel. Propag. Lett., Vol. 7, 58-61, 2008.
doi:10.1109/LAWP.2008.917605