Vol. 82
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-03-11
Modelling and Simulation of P-I-n Quantum Dot Semiconductor Saturable Absorber Mirrors
By
Progress In Electromagnetics Research C, Vol. 82, 39-53, 2018
Abstract
Semiconductor saturable absorber mirror (SESAM) based on InAs quantum dot (QD) material is important in designing fast mode-locked laser devices. A self-consistent time-domain travelling-wave (TDTW) model for the simulation of self-assembled QD-SESAM is developed. The 1-D TDTW model takes into consideration the time-varying QD optical susceptibility, refractive index variation resulting from the intersubband free-carrier absorption, homogeneous and inhomogeneous broadening. The carrier concentration rate equations are considered simultaneously with the travelling wave model. The model is used to analyze the characteristics of 1.3-μm p-i-n QD InAs-GaAs SESAM. The field distribution resulting from the TDTW equations, in both the SESAM absorbing region and the distributed Bragg reflectors, is obtained and used in finding the device characteristics including the modulation depth and recovery dynamics. These characteristics are studied considering the effects of QD surface density, inhomogeneous broadening, the number of QD absorbing layers, and the applied reverse voltage. The obtained results, based on the assumed device parameters, are in good agreement, qualitatively, with the experimental results.
Citation
Ahmed E. Abouelez, Essam Eldiwany, Mohamed Bakry El Mashade, and Hussien A. Konber, "Modelling and Simulation of P-I-n Quantum Dot Semiconductor Saturable Absorber Mirrors," Progress In Electromagnetics Research C, Vol. 82, 39-53, 2018.
doi:10.2528/PIERC17112804
References

1. Bellancourt, A. R., B. Rudin, D. J. H. C. Maas, M. Golling, H. J. Unold, T. Sudmeyer, and U. Keller, "First demonstration of a Modelocked Integrated External-Cavity Surface Emitting Laser (MIXSEL)," 2007 Conference on Lasers and Electro-Optics (CLEO), 2007.

2. Haiml, M., R. Grange, and U. Keller, "Optical characterization of semiconductor saturable absorbers," Applied Physics B: Lasers and Optics, Vol. 79, No. 3, 331-339, 2004.
doi:10.1007/s00340-004-1535-1

3. Keller, U., "Semiconductor nonlinearities for solid-state laser modelocking and Q-switching," Nonlinear Optics in Semiconductors II. Semiconductor and Semimetals, E. Garmire, A. Kost (eds.), Vol 59, 211-286, Academic Press, San Diego, CA, 1998.

4. Malins, D. B., A. Gomez-Iglesias, S. J. White, W. Sibbett, A. Miller, and E. U. Rafailov, "Ultrafast electroabsorption dynamics in an InAs quantum dot saturable absorber at 1.3 μm," Applied Physics Letters, Vol. 89, No. 17, 171111, 2006.
doi:10.1063/1.2369818

5. Zolotovskaya, S. A., M. Butkus, R. H¨aring, A. Able, W. Kaenders, I. L. Krestnikov, D. A. Livshits, and E. U. Rafailov, "p-i-n junction quantum dot saturable absorber mirror: Electrical control of ultrafast dynamics," Optics Express, Vol. 20, No. 8, 9038-9045, Mar. 2012.
doi:10.1364/OE.20.009038

6. Maas, D. J. H. C., A. R. Bellancourt, M. Hoffmann, B. Rudin, Y. Barbarin, M. Golling, T. Sudmeyer, and U. Keller, "Growth parameter optimization for fast quantum dot SESAMs," Optics Express, Vol. 16, No. 23, 18646-18656, 2008.
doi:10.1364/OE.16.018646

7. Yu, S. F., "Dynamic behavior of vertical-cavity surface-emitting lasers," IEEE Journal of Quantum Electronics, Vol. 32, No. 7, 1168-1179, 1996.
doi:10.1109/3.517017

8. Yu, S. F., "An improved time-domain traveling-wave model for vertical-cavity surface-emitting lasers," IEEE Journal of Quantum Electronics, Vol. 34, No. 10, 1938-1948, 1998.
doi:10.1109/3.720230

9. Rossetti, M., P. Bardella, and I. Montrosset, "Time-domain travelling-wave model for quantum dot passively mode-locked lasers," IEEE Journal of Quantum Electronics, Vol. 47, No. 2, 139-150, 2011.
doi:10.1109/JQE.2010.2055550

10. Gioannini, M. and M. Rossetti, "Time-domain traveling wave model of quantum dot DFB lasers," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 17, No. 5, 1318-1326, 2011.
doi:10.1109/JSTQE.2011.2128857

11. Abouelez, A. E., E. Eldiwany, M. B. El Mashade, and H. A. Konber, "Time-domain travelling-wave model for quantum dot based vertical cavity laser devices," Progress In Electromagnetics Research M, Vol. 65, 29-42, 2018.
doi:10.2528/PIERM17112103

12. Lagatsky, A. A., E. U. Rafailov, W. Sibbett, D. A. Livshits, A. E. Zhukov, and V. M. Ustinov, "Quantum-dot-based saturable absorber with pn junction for mode-locking of solid-state lasers," IEEE Photonics Technology Letters, Vol. 17, No. 2, 294-296, 2005.
doi:10.1109/LPT.2004.839387

13. Michalzik, R., "Simple understanding of waveguiding in oxidized VCSELs," Annu. Rep. 1, 19-23, Dept. Optoelectron., Univ. Ulm, Ulm, Germany, 1995.

14. Piskorski, L., M. Wasiak, R. Sarzala, and W. Nakwaski, "Structure optimisation of modern GaAs-based InGaAs/GaAs quantum-dot VCSELs for optical fibre communication," Opto-Electronics Review, Vol. 17, No. 3, 217-224, Jan. 2009.
doi:10.2478/s11772-008-0067-3

15. Mulet, J. and S. Balle, "Mode-locking dynamics in electrically driven vertical-external-cavity surface-emitting lasers," IEEE Journal of Quantum Electronics, Vol. 41, No. 9, 1148-1156, 2005.
doi:10.1109/JQE.2005.853355

16. Yu, S. F., Analysis and Design of Vertical Cavity Surface Emitting Lasers, John Wiley & Sons, 2003.
doi:10.1002/0471723789

17. Sugawara, M., Self-assembled InGaAs/GaAs Quantum Dots: Semiconductors and Semimetals, Vol. 60, Academic Press, San Diego, CA, 1999.

18. Kim, J., C. Meuer, D. Bimberg, and G. Eisenstein, "Effect of inhomogeneous broadening on gain and phase recovery of quantum-dot semiconductor optical amplifiers," IEEE Journal of Quantum Electronics, Vol. 46, No. 11, 1670-1680, 2010.
doi:10.1109/JQE.2010.2058793

19. Tong, C., S. Yoon, C. Ngo, C. Liu, and W. Loke, "Rate equations for 1.3-μm dots-under-a-well and dots-in-a-well self-assembled InAs-GaAs quantum-dot lasers," IEEE Journal of Quantum Electronics, Vol. 42, No. 11, 1175-1183, 2006.
doi:10.1109/JQE.2006.883471

20. Agrawal, G. P. and N. K. Dutta, Semiconductor Lasers, 2nd Ed., Van Nostrand, New York, 1993.

21. Xu, T., M. Rossetti, P. Bardella, and I. Montrosset, "Simulation and analysis of dynamic regimes involving ground and excited state transitions in quantum dot passively mode-locked lasers," IEEE Journal of Quantum Electronics, Vol. 48, No. 9, 1193-1202, 2012.
doi:10.1109/JQE.2012.2206372

22. Berg, T. W. and J. Mørk, "Quantum dot amplifiers with high output power and low noise," Applied Physics Letters, Vol. 82, No. 18, 3083-3085, May 2003.
doi:10.1063/1.1571226