Vol. 59
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2015-09-24
Bandpass Filters with Mixed Hairpin and Patch Resonators
By
Progress In Electromagnetics Research C, Vol. 59, 101-106, 2015
Abstract
This paper presents a new implementation technique of transmission zeros in an in-line coupled filter. Neither cross couplings between non-adjacent resonators nor separate side-line resonators have been used. Instead a mixture of single-mode hairpin resonators and dual-mode patch resonators have been adopted in a bandpass filter with one asymmetric transmission zero. The introduction of the patch led to an improved frequency selectivity through an independently controllable transmission zero. This approach has been verified by a three-pole filter at 2.6 GHz with 8% bandwidth and a transmission zero at 2.4 GHz. Good agreement has been shown between the measurements and the simulation.
Citation
Eugene Amobichukwu Ogbodo, Yi Wang, and Predrag B. Rapajic, "Bandpass Filters with Mixed Hairpin and Patch Resonators," Progress In Electromagnetics Research C, Vol. 59, 101-106, 2015.
doi:10.2528/PIERC15072905
References

1. Meng, M. and I. Hunter, "The design of parallel connected filter networks with non-uniform Q resonators," IEEE MTT-S Int. Microw. Symp. Dig., Vol. 61, No. 1, 372-381, June 17-22, 2012.

2. Yusuf, Y. and X. Gong, "Compact low-loss integration of high-3-D filters with highly efficient antennas," IEEE Trans. Microw. Theo. Techn., Vol. 59, No. 4, 857-865, April 2011.
doi:10.1109/TMTT.2010.2100407

3. Mao, C. X., S. Gao, Z. P. Wang, Y. Wang, F. Qin, B. Sanz-Izquierdo, and Q. X. Chu, "Integrated filtering-antenna with controllable frequency bandwidth," 9th Europ. Conf. on Antennas and Propagation (EuCAP), April 12-17, 2015.

4. Hong, J.-S., Microstrip Filters for RF/Microwave Applications, John Wiley & Sons, Inc., 2011.
doi:10.1002/9780470937297

5. Liao, C. and C. Chang, "Design of microstrip quadruplet filters with source-load coupling," IEEE Trans. Microwave Theory and Techniques, Vol. 53, No. 7, 2302-2308, July 2005.
doi:10.1109/TMTT.2005.850442

6. Rhodes, J. and R. Cameron, "General extracted pole synthesis technique with applications to low-loss TE011 mode filters," IEEE Trans. Microwave Theory and Techniques, Vol. 28, No. 9, 1018-1028, September 1980.
doi:10.1109/TMTT.1980.1130213

7. Macchiarella, G. and M. Politi, "Use of generalized coupling coefficients in the design of extracted-poles waveguide filters with non-resonating nodes," IEEE MTT-S Int. Microw. Symp. Dig., 1341-1344, June 2009.

8. Jedrzejewski, A., N. Leszczynska, L. Szydlowski, and M. Mrozowski, "Zero-pole approach to computer aided design of in-line SIW filters with transmission zeros," Progress In Electromagnetics Research, Vol. 131, 517-533, 2012.
doi:10.2528/PIER12061510

9. Yeo, K., M. Lancaster, and J. Hong, "The design of microstrip six-pole quasi-elliptic filter with linear phase response using extracted-pole technique," IEEE Trans. Microwave Theory and Technique, Vol. 40, No. 2, 321-327, 2001.
doi:10.1109/22.903092