Vol. 58
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2015-07-28
Hybrid Broadband 60-GHz Double Negative Metamaterial High Gain Antenna
By
Progress In Electromagnetics Research C, Vol. 58, 143-155, 2015
Abstract
This paper proposes a double negative metamaterial surface as a superstrate for a multilayer cylindrical dielectric resonator antenna (MCDRA). The aim is to achieve a broadband and high gain Electromagnetic Band Gap (EBG) antenna that can be used in harsh propagation areas to satisfy all the requirements for the 60 GHz wireless communications offering a bandwidth of 7 GHz in the unlicensed ISM band (57−65 GHz), permitting to reach data rates of 10 Gbit/s and more. To meet these objectives various techniques are combined. Numerical and experimental results showed satisfactory performances with achievable impedance bandwidth of more than 10.5% (from 58.1 to 64.2 GHz) and a 18 dBi gain, an enhancement of 13 dBi compared to a homogenous DRA without metamaterial superstrate. The proposed antenna exhibits directive and stable radiation pattern in the entire operating band.
Citation
Taieb Elkarkraoui, Gilles Y. Delisle, Nadir Hakem, and Yacouba Coulibaly, "Hybrid Broadband 60-GHz Double Negative Metamaterial High Gain Antenna," Progress In Electromagnetics Research C, Vol. 58, 143-155, 2015.
doi:10.2528/PIERC15052811
References

1. Rappaport, T. S., J. Murdock, and F. Gutierre, "State of the art in 60-GHz integrated circuits and systems for wireless communications," Proceedings of the IEEE, Vol. 99, No. 8, 1390-1436, 2011.
doi:10.1109/JPROC.2011.2143650

2. Smulders, P. F. M., "60 GHz radio: Prospects and future directions," Proceedings of the IEEE Symposium Benelux Chapter on Communications and Vehicular Technology, 1-8, Eindhoven, Netherlands, 2003.

3. Petosa, A., A. Ittipiboon, Y. M. Antar, and D. Roscoe, "Recent advances in dielectric resonator antenna technology," IEEE Antennas and Propagation Magazine, Vol. 40, No. 3, 35-48, Jun. 1998.
doi:10.1109/74.706069

4. Vettikalladi, H., O. Lafond, and M. Himdi, "High-efficient and high-gain superstrate antenna for 60-GHz indoor communication," IEEE Antennas Wireless Propagat. Lett., Vol. 8, 1422-1425, 2009.
doi:10.1109/LAWP.2010.2040570

5. Thvenot, C. and R. Jecko, "Directive photonic band gap antenna," IEEE Trans. on Microwaves Theory and Tech., Vol. 47, 2115-2122, Nov. 1999.

6. Denidni, T. A., Y. Coulibaly, and H. Boutayeb, "Hybrid dielectric resonator with circular musroom like stucture for gain improvement," IEEE Trans. Antennas Propag., Vol. 57, No. 4, 1043-1049, Apr. 2009.
doi:10.1109/TAP.2009.2015809

7. Elkarkraoui, T., G. Y. Delisle, N. Hakem, and Y. Coulibaly, "New hybrid design for a broadband high gain 60-GHz dielectric resonator antenna," 7th European Conference on Antennas and Propagation (EUCAP’2013), 2379-2382, Gothenburg, Sude, 2013.

8. Chen, X., T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Phys. Rev., Vol. 70, No. 1, 016608.17, 2004.
doi:10.1103/PhysRevB.70.014501

9. Saenz, E., R. Gonzalo, I. Ederra, J. C. Vardaxoglou, and P. de Maagt, "Resonant meta-surface superstrate for single and multi-frequency dipole antenna arrays," IEEE Trans. Antennas Propag., Vol. 56, 951-960, 2008.
doi:10.1109/TAP.2008.919212

10. Esselle, K. P. and T. S. Bird, "A hybrid-resonator antenna: Experimental results," IEEE Trans. Antennas Propag., Vol. 53, 870-871, 2005.
doi:10.1109/TAP.2004.841325

11. Kishk, A., Y. Yin, and A. W. Glisson, "Conical dielectric resonator antennas for wide-band applications," IEEE Trans. Antennas Propag., Vol. 50, 469-474, 2002.
doi:10.1109/TAP.2002.1003382

12. Ge, Y., K. P. Esselle, and T. S. Bird, "A wide band probe-fed stacked dielectric resonator antenna," Microwave and Optical Technology Letters, Vol. 48, No. 8, 1630-1633, Aug. 8, 2006.
doi:10.1002/mop.21716

13. Huang, W. and A. A. Kishk, "Compact wideband multi-layer cylindrical dielectric resonator antennas," IET Microw. Antennas Propagation, Vol. 1, 998-1005, Oct. 2007.

14. Kaklamani, D. I., "Full-wave analysis of a Fabry-Parot type resonator," Progress In Electromagnetics Research, Vol. 24, 279-310, 1999.
doi:10.2528/PIER99042601

15. Walters, K. A. and G. W. Hanson, "Resonant frequency calculation for inhomogeneous dielectric resonators using volume integral equations and face-centered node points," Microwave and Optical Technology Letters, Vol. 32, No. 5, 356-359, 2002.
doi:10.1002/mop.10176

16. Mongia, R. K. and P. Bhartia, "Dielectric resonator antennas a review and general design relations for resonant frequency and bandwidth," International Journal of Microwave and Millimeter-wave Computer-aided Engineering, Vol. 4, No. 3, 230-247, Mar. 1994.
doi:10.1002/mmce.4570040304

17. Long, A., M. W. McAllister, and L. C. Shen, "The resonant cylindrical dielectric resonator antenna," IEEE Trans. Antennas Propag., Vol. 31, No. 3, 406-412, May 1983.
doi:10.1109/TAP.1983.1143080

18. Glisson, A. W., D. Kajfez, and J. James, "Evaluation of modes in dielectric resonators using a surface integral equation formulation," IEEE Trans. on Microwaves Theory and Tech., Vol. 31, No. 12, 1023-1029, 1983.
doi:10.1109/TMTT.1983.1131656

19. Han, T. C., M. K. A. Rahim, T. Masri, and M. N. A. Karim, "Left handed metamaterial design for microstrip antenna application," Microwave Conference, Asia-Pacific Microwave Conference, 1-4, Bangkok, Thailand, 2007.

20. Ziolkowski, R. W., "Design, fabrication, and testing of double negative metamaterials," IEEE Trans. Antennas Propag., Vol. 51, 1516-1529, 2003.
doi:10.1109/TAP.2003.813622

21. Feresidis, A. P. and J. C. Vardaxoglou, "High gain planar antenna using optimized partially reflective surfaces," IEE Proceedings — Microwaves, Antennas and Propagation, Vol. 148, No. 6, 345-350, Dec. 2001.
doi:10.1049/ip-map:20010828

22. Szabo, S., G.-H. Park, R. Hedge, and E.-P. Li, "A unique extraction of metamaterial parameters based on Kramers-Kronig relationship," IEEE Trans. on Microwaves Theory and Tech., Vol. 58, No. 10, 2646-2653, Oct. 2010.
doi:10.1109/TMTT.2010.2065310

23. Franson, S. J. and R. W. Ziolkowski, "Giga-bit per second data transfer in high-gain metamaterial structures at 60 GHz," IEEE Trans. Antennas Propag., Vol. 57, No. 10, 2913-2925, 2009.
doi:10.1109/TAP.2009.2029277

24. Vettikalladi, H., L. Le Coq, O. Lafond, and M. Himd, "High-effcient slot-coupled superstrate antenna for 60 GHz WLAN applications," Proceedings of the Fourth European Conference on Antennas and Propagation (EuCAP), 1-5, 2010.

25. Coulibaly, Y., M. Nedil, I. Ben Mabrouk, L. Talbi, and T. A. Denidni, "High gain rectangular dielectric resonator for broadband millimeter-waves underground communications," Publication on Canadian Conference Electrical and Computer Engineering (CCECE), 1088-1091, 2011.

26. Hosseini, S. A., F. Capolino, and F. De Flaviis, "Design of a single-feed 60 GHz planar metallic Fabry-Perot cavity antenna with 20 dB gain," Proceedings of the IEEE International Workshop on Antenna Technology (iWAT’ 09), 1-4, Santa Monica, Calif, USA, Mar. 2009.