Vol. 57
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2015-06-15
A Robust Augmented Combination of Digital Predistortion and Crest Factor Reduction for RF Power Amplifiers
By
Progress In Electromagnetics Research C, Vol. 57, 181-191, 2015
Abstract
This paper proposes a robust combination of digital predistortion (DPD) and crest factor reduction (CFR) for radio frequency (RF) power amplifiers (PAs). It is constructed using the architecture of CFR-DPD connected with a compensation module (CM). The compensation module is introduced to achieve mutual compensation between the output signals of CFR and DPD, and this can reduce the damage to the signal by CFR. The combination of CFR-DPD-CM provides the means to exploit margins in the transmitter performance, allowing the tradeoff among peak-to-average power ratio (PAPR), adjacent channel power ratio (ACPR) and error vector magnitude (EVM). The proposed combination of CFR-DPD-CM is assessed using a GaN Class-F PA driven by two modulated signals (a 4-carrier OFDM signal and a WCDMA 1001 signal with 20-MHz bandwidth), and a GaN Doherty PA driven by a 15-MHz long-term evolution (LTE) signal. The experimental results show that when the CFR reduces the PAPR about 4 dB, applying the proposed combination of CFR-DPD-CM, the average reduction of ACPR is 5.12 dB, and the average reduction of EVM is 1.26% compared with the conventional architecture of CFR-DPD.
Citation
Jingmei Zhao, Cuiping Yu, Jianguo Yu, Yuan'an Liu, and Shulan Li, "A Robust Augmented Combination of Digital Predistortion and Crest Factor Reduction for RF Power Amplifiers," Progress In Electromagnetics Research C, Vol. 57, 181-191, 2015.
doi:10.2528/PIERC15032306
References

1. Hashmi, M. S., Z. S. Rogojan, and F. M. Ghannouchi, "A flexible dual-inflection point RF predistortion linearizer for microwave power amplifiers," Progress In Electromagnetics Research C, Vol. 13, 1-18, 2010.
doi:10.2528/PIERC10012609

2. El Maazouzi, L., A. Mediavilla, and P. Colantonio, "A contribution to linearity improvement of a highly efficient PA for WIMAX applications," Progress In Electromagnetics Research, Vol. 119, 59-84, 2011.
doi:10.2528/PIER11051602

3. Du, T., C. Yu, Y. Liu, J. Gao, S. Li, and Y. Wu, "A new accurate Volterra-based model for behavioral modeling and digital predistortion of RF power amplifiers," Progress In Electromagnetics Research C, Vol. 29, 205-218, 2012.
doi:10.2528/PIERC12032707

4. Jiang, T., Y. Yang, and Y.-H. Song, "Exponential companding technique for PAPR reduction in OFDM systems," IEEE Trans. Broadcast., Vol. 51, No. 2, 244-248, Jun. 2005.
doi:10.1109/TBC.2005.847626

5. Krongold, B. S. and D. L. Jones, "PAR reduction in OFDM via active constellation extension," IEEE Trans. Broadcast., Vol. 49, No. 3, 258-268, Sep. 2003.
doi:10.1109/TBC.2003.817088

6. Baxley, R. J., C. Zhao, and G. T. Zhou, "Constrained clipping for crest factor reduction in OFDM," IEEE Trans. Broadcast., Vol. 52, No. 4, 570-575, 2006.
doi:10.1109/TBC.2006.883301

7. Armstrong, J., "Peak-to-average power reduction for OFDM by repeated clipping and frequency domain filtering," Electron. Lett., Vol. 38, No. 5, 246-247, 2002.
doi:10.1049/el:20020175

8. Gilabert, P. L., M. E. Gadringer, G. Montoro, M. L. Mayer, D. D. Silveira, E. Bertran, and G. Magerl, "An efficient combination of digital predistortion and OFDM clipping for power amplifiers," Int. J. RF Microw. Compu. Aid. Eng., 583-591, 2009.
doi:10.1002/mmce.20381

9. Helaoui, M., S. Boumaiza, A. Ghazel, and F. M. Ghannouchi, "On the RF/DSP design for efficiency of OFDM transmitters," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 7, 2355-2361, 2005.
doi:10.1109/TMTT.2005.850437

10. Sperlich, R., Y. Park, G. Copeland, and J. S. Kenney, "Power amplifier linearization with digital pre-distortion and crest factor reduction," IEEE MTT-S Int. Microwave Symposium (IMS), 669-672, 2004.

11. Nader, C., P. N. Landin, W. V. Moer, N. Bjorsell, and P. Handel, "Performance evaluation of peak-to-average power ratio reduction and digital pre-distortion for OFDM based systems," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 12, 3504-3511, 2011.
doi:10.1109/TMTT.2011.2170583

12. Nader, C., P. Handel, and N. Bjorsell, "Peak-to-average power reduction of OFDM signals by convex optimization: Experimental validation and performance optimization," IEEE Trans. Instrum. Meas., Vol. 60, No. 2, 473-479, 2011.
doi:10.1109/TIM.2010.2050360

13. Nader, C., P. N. Landin, W. V. Moer, N. Bjorsell, P. Handel, and D. R¨onnow, "Peak-power controlling technique for enhancing digital pre-distortion of RF power amplifiers," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 11, 3571-3581, 2012.
doi:10.1109/TMTT.2012.2213836

14. Hammi, O., S. Carichner, B. Vassilakis, and F. M. Ghannouchi, "Synergetic crest factor reduction and baseband digital predistortion for adaptive 3G Doherty power amplifier linearizer design," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 11, 2602-2608, 2008.
doi:10.1109/TMTT.2008.2004899

15. Zhu, A., P. J. Draxler, J. J. Yan, T. J. Brazil, D. F. Kimball, and P. M. Asbeck, "Open-loop digital predistorter for RF power amplifiers using dynamic deviation reduction-based volterra series," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 7, 1524-1534, 2008.
doi:10.1109/TMTT.2008.925211

16. Davis, J. A. and J. Jedwab, "Peak-to-mean power control and error correction for OFDM transmission using golay sequences and reed-muller codes," Electron. Lett., Vol. 33, No. 4, 267-268, 1997.
doi:10.1049/el:19970205

17. Braithwaite, R. N., "A combined approach to digital predistortion and crest factor reduction for the linearization of an RF power amplifier," IEEE Trans. Microw. Theory Tech., Vol. 61, No. 1, 291-302, 2013.
doi:10.1109/TMTT.2012.2222911

18. Ding, L., G. T. Zhou, D. R. Morgan, Z. Ma, J. S. Kenney, J. Kim, and C. R. Giardina, "Memory polynomial predistorter based on the indirect learning architecture," IEEE Global Telecommunications Conference, Vol. 1, 967-971, Nov. 2002.

19. Ding, L., Z. Ma, D. R. Morgan, M. Zierdt, and J. Pastalan, "A least-squares/newton method for digital predistortion of wideband signals," IEEE Trans. Commun., Vol. 54, No. 5, 833-840, 2006.
doi:10.1109/TCOMM.2006.873996

20. Hammi, O., S. Carichner, B. Vassilakis, and F. M. Ghannouchi, "Effects of crest factor reduction on the predistortion performance for multi-carrier 3G RF power amplifiers," IEEE MTT-S Int. Microwave Symposium (IMS), 1085-1088, 2009.

21. Ai, B., Z. Yang, C. Pan, T. Zhang, and J. Ge, "Effects of PAPR reduction on HPA predistortion," IEEE Trans. Consum. Electr., Vol. 51, No. 4, 1143-1147, 2005.
doi:10.1109/TCE.2005.1561836

22. Farabegoli, A., B. Sogl, J. E. Mueller, and R. Weigel, "Advanced transmitters with combined crest factor reduction and digital predistortion techniques," IEEE International Conference on Radio and Wireless Symposium (RWS), 133-135, Newport Beach, Jan. 2014.