Vol. 56
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2015-02-13
Compact Printed Diversity Antenna for LTE700/GSM1700/1800/UMTS/Wi-Fi/Bluetooth/LTE2300/2500 Applications for Slim Mobile Handsets
By
Progress In Electromagnetics Research C, Vol. 56, 83-91, 2015
Abstract
A planar, printed multiple-input multiple-output (MIMO) antenna for slim mobile handset is presented. The dual-antenna system, comprises two symmetric antenna elements, is printed on a printed circuit board (PCB) of mobile phone. Each antenna element consists of coupled-fed loop antenna. The loop antenna is formed by a quarter wavelength (at 762 MHz) meandered loop strip with end terminal short-circuited to the ground plane. A Tshaped protruded ground is deliberately designed to enhance the impedance matching and decoupled the two closely deposed antenna elements (distance between antenna elements are 0.03λ at 762 MHz). The integrity of the T-shaped decoupling structure and coupled-fed loop antenna array covers LTE700 (0.747 GHz−0.787 GHz) and WWAN (1.7 GHz-3.04 GHz) based on -6 dB reflection coefficient and achieves isolation between elements well below -10 dB over all the operating bands. The application platform is LTE700, GSM1700, GMS1800, UMTS, Wi-Fi, Bluetooth, LTE2300, and LTE2500 bands for the 2G/3G/4G mobile terminals. The effect of user proximity by considering the actual mobile environment is also studied in the form of total radiated power (TRP), specific absorption rate (SAR), diversity performances, and radiation performances. Finally, a prototype is fabricated and tested with network analyser. The measured results are found in good agreement with simulated ones.
Citation
Hari Shankar Singh, Gaurav Kumar Pandey, Pradutt Kumar Bharti, and Manoj Kumar Meshram, "Compact Printed Diversity Antenna for LTE700/GSM1700/1800/UMTS/Wi-Fi/Bluetooth/LTE2300/2500 Applications for Slim Mobile Handsets," Progress In Electromagnetics Research C, Vol. 56, 83-91, 2015.
doi:10.2528/PIERC14122601
References

1. Foschini, G. J. and M. J. Gans, "On limits of wireless communications in a fading environment when using multiple antennas," Wireless Person. Commun., Vol. 6, No. 3, 311-335, 1998.
doi:10.1023/A:1008889222784

2. Lee, B., E. J. Harackiewicz, and H. Wi, "Closely mounted mobile handset MIMO antenna for LTE 13 band application," IEEE Ant. and Wireless Propag. Lett., Vol. 13, 411-414, 2014.

3. Lee, J., Y.-K. Hong, S. Bae, G. S. Abo, W.-M. Seong, and G.-H. Kim, "Miniature long-term evolution (LTE) MIMO ferrite antenna," IEEE Ant. and Wireless Propag. Lett., Vol. 11, 603-606, 2011.

4. Baek, J. and J. H. Choi, "The design of a LTE/MIMO antenna with high isolation using a decoupling network," Microwave Opt. Tech. Lett., Vol. 56, No. 9, 2187-2191, 2014.
doi:10.1002/mop.28551

5. Yu, Y., G. Kim, J. Ji, and W. Seong, "A compact hybrid internal MIMO antenna for LTE application," European Conference on Antennas and Propagation, 1-2, Barcelona, Spain, Apr. 12-16, 2010.

6. Kim, B., Y. Park, H. Wi, M.-J. Park, Y. Choi, J. Lee, W. Jung, D. Kim, and B. Lee, "Isolation enhancement of USB dongleMIMO antenna in LTE700 band applications," IEEE Ant. and Wireless Propag. Lett., Vol. 11, 961-964, 2012.

7. Park, G., M. Kim, T. Yang, J. Byun, and A. S. Kim, "The compact quad-band handset antenna for LTE700 MIMO application," IEEE Antennas and Propagation Society International Symposium (APSURSI 2009), 1-4, Charleston, SC, Jun. 1-5, 2009.

8. Thomas, T., Y. V. B. Reddy, and K. Veeraswamy, "Small size printed antenna array for LTE/WWAN with LTE MIMO operation for mobile communication," 20th International Conference on Electronics and Communication Engineering, 64-68, Banglore, India, May 2012.

9. Wong, K.-L., T.-W. Kang, and M.-F. Tu, "Internal mobile phone antenna array for LTE/WWAN and LTE MIMO operations," Microwave Opt. Tech. Lett., Vol. 53, No. 7, 1569-1573, 2011.
doi:10.1002/mop.26038

10. Zhang, S., K. Zhao, Z. Ying, and S. He, "Adaptive quad-element multi-wideband antenna array for user-effective LTE MIMO mobile terminals," IEEE Trans. on Antennas and Propag., Vol. 61, No. 8, 4275-4283, 2013.
doi:10.1109/TAP.2013.2260714

11. Yang, S., T. Jiang, J. L.-W. Li, and Y.-L. Ban, "Internal low profile multi band MIMO antenna for WWAN/LTE mobile phone applications," IEEE International Symposium Antennas and Propagation Society, 522-523, Orlando, FL, Jul. 7-13, 2013.

12. Diallo, A., C. Luxey, P. Le thuc, R. Staraj, and G. Kossiavas, "Study and reduction of the mutual coupling between two mobile phone PIFAs operating in the DCS1800 and UMTS bands," IEEE Trans. on Antennas Propag., Vol. 54, No. 11, 3063-3074, 2006.
doi:10.1109/TAP.2006.883981

13. Meshram, M. K., R. K. Animeh, A. T. Pimpale, and N. K. Nikolova, "A novel quad-band diversity antenna for LTE and Wi-Fi applications with high isolation," IEEE Trans. on Antennas Propag., Vol. 60, No. 9, 4360-4371, 2012.
doi:10.1109/TAP.2012.2207044

14. Chen, S. C., Y. S. Wang, and S. J. Chuang, "A decoupling technique for increasing the port isolation between two strongly coupled antennas," IEEE Trans. on Antennas Propag., Vol. 56, No. 12, 3650-3658, 2008.
doi:10.1109/TAP.2008.2005469

15. Zhang, S., S. N. Khan, and S. He, "Reducing mutual coupling for an extremely closely-packed tunable dual-element PIFA array through a resonant slot antenna formed in-between," IEEE Trans. on Antennas Propag., Vol. 58, No. 8, 2771-2776, 2010.
doi:10.1109/TAP.2010.2050432

16. Ban, Y.-L., Z. X. Chen, Z. Chen, K. Kang, and L. W. Li, "Decoupled closely-spaced hepta-band antenna array for WWAN/LTE smartphone applications," IEEE Ant. and Wireless Propag. Lett., Vol. 13, 31-34, 2014.

17. Ban, Y.-L., S. Yang, Z. Chen, K. Kang, and J. L.-W. Li, "Decoupled planar WWAN antennas with T-shaped protruded ground for smartphone applications," IEEE Ant. and Wireless Propag. Lett., Vol. 13, 483-486, 2014.

18. Ansoft High Frequency Structure Simulator (HFSS), , Online Available: http://www.ansoft.com.

19. Computer Simulation Technology Microwave Studio (CST MWS), Online Available: http://www.cst.com.

20. CTIA "CTIA certification test plan for mobile station over the air performance," Method of Measurement for Radiated RF Power and Receiver Performance, Washington, DC, Apr. 2005.

21. Durney, C. H., H. Massoudi, and M. F. Iskander, Radiofrequency Radiation Dosimetry Handbook, 4th Ed., Rep. USAF-SAM-TR-85-73, USAF School of Aerospace Medicine, Aerospace Medical Division (AFSC), Oct. 1986.

22. Taga, T., "Analysis for mean effective gain of mobile antennas in land mobile radio environments," IEEE Trans. Veh. Technol., Vol. 39, 117-131, 1990.
doi:10.1109/25.54228

23. Singh, H. S., B. R. Meruva, G. K. Pandey, P. K. Bharti, and M. K. Meshram, "Low mutual coupling between MIMO antennas by using two folded shorting strips," Progress In Electromagnetics Research B, Vol. 53, 205-221, 2013.
doi:10.2528/PIERB13052305