Vol. 33
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-08-03
Formulating a Vector Wave Expression for Polarimetric GNSS Surface Scattering
By
Progress In Electromagnetics Research B, Vol. 33, 257-276, 2011
Abstract
This paper formulates a simple vector integral expression for electromagnetic waves received after scattering from a surface. The derived expression is an alternative to the Stratton-Chu equation frequently used for polarimetric surface scattering. It is intended for use in polarimetric Global Navigation Satellite System (GNSS) ocean remote sensing, or any type of polarimetric remote sensing from surfaces, when the surface roughness pattern is known from simulation or data. This paper is intended to present a complete accounting of the steps leading to the simpler vector integral expression. It therefore starts with the scalar case, using Maxwell's equations and Green's theorem. It principally treats the case of a transmitter within the integration volume, but discusses how the formalism changes if the transmitter is outside of the integration volume, as with plane waves. It then shows how the scalar expression can be extended to a vector expression for the component of the electric field in an arbitrary receive-polarization direction due to scattering from a rough surface of an incident wave with an arbitrary transmit polarization. It uses the Kirchhoff, or tangent-plane, approximation in which each facet on the ocean is considered to specularly reflect the incoming signal. The derived vector expression is very similar to that for a scalar wave, but it includes all vector properties of the scattering. Equivalence is demonstrated between the Stratton-Chu equation and the derived, simpler expression, which is operationally easier to code than the Stratton-Chu equation in many modeling applications.
Citation
Robert N. Treuhaft, Stephen T. Lowe, and Estel Cardellach, "Formulating a Vector Wave Expression for Polarimetric GNSS Surface Scattering," Progress In Electromagnetics Research B, Vol. 33, 257-276, 2011.
doi:10.2528/PIERB11042910
References

1. Garrison, J. L. and S. J. Katzberg, "Effect of sea roughness on bistatically scattered range coded signals from the global positioning system ," Geophysical Research Letters, Vol. 25, No. 13, 2257-2260, 1998.
doi:10.1029/98GL51615

2. Zavorotny, V. U. and A. G. Voronovich, "Scattering of GPS signals from the ocean with wind remote sensing application," IEEE Trans. on Geosci. and Rem. Sens., Vol. 38, No. 2, 951-964, 2000.
doi:10.1109/36.841977

3. Martin-Neira, M., M. Caparrini, J. Font-Rossello, S. Lannelongue, and C. S. Vallmitjana, "The PARIS concept: An experimental demonstration of sea surface altimetry using GPS reflected signals ," IEEE Trans. on Geosci. and Rem. Sens., Vol. 39, No. 1, 142-150, 2001.
doi:10.1109/36.898676

4. Treuhaft, R. N., S. T. Lowe, C. Zuffada, and Y. Chao, "2-cm GPS altimetry over crater lake," Geophysical Research Letters, Vol. 22, No. 23, 4343-4346, 2001.
doi:10.1029/2001GL013815

5. Lowe, S. T., C. Zuffada, Y. Chao, P. Kroger, L. E. Young, and J. L. LaBrecque, "5-cm precision aircraft ocean altimetry using GPS reflections," Geophysical Research Letters, Vol. 29, No. 10, 1375, 2002.
doi:10.1029/2002GL014759

6. Ruffini, G., M. Soulat, M. Caparrini, O. Germain, and M. Martin-Neira-, "The eddy experiment: Accurate GNSS-R ocean altimetry from low altitude aircraft," Geophysical Research Letters, Vol. 31, L12306-L12309, 2001.

7. Cardellach, E. and A. Rius, "A new technique to sense nonGaussian features of the sea surface from L-band bi-static GNSS reflections," Remote Sensing Environment, Vol. 112, No. 6, 2927-2937, 2008.
doi:10.1016/j.rse.2008.02.003

8. Yang, D. K., Y. Q. Zhang, Y. Lu, and Q. S. Zhang, "GPS reflections for sea surface wind speed measurement," IEEE Trans. on Geosci. and Rem. Sens., Vol. 5, No. 4, 569-572, 2008.
doi:10.1109/LGRS.2008.2000620

9. Semmling, A. M., G. Beyerle, R. Stosius, G. Dick, J. Wickert, F. Fabra, E. Cardellach, S. Ribo, A. Rius, S. B. Yudanov, and S. d'Addio, "Detection of arctic ocean tides using interferometric GNSS-R signals ," Geophysical Research Letters, Vol. 38, L04103, 2011, doi: 10.1029/2010GL046005.
doi:10.1029/2010GL046005

10. Zuffada, C., A. Fung, J. Parker, M. Okolicanyi, and E. Huang, "Polarization properties of the GPS signal scattered off a wind-driven ocean," IEEE Transactions on Antennas and Propagation, Vol. 52, 172-188, 2004.
doi:10.1109/TAP.2003.822438

11. Jackson, J. D., Classical Electrodynamics, Vol. 41, 428, Wiley and Sons, New York, 1975.

12. Elfouhaily, T., B. Chapron, and K. Katsaros, "A unified directional spectrum for long and short wind-driven waves," Journal of Geophysical Research, Vol. 102, No. C7, 15781-15796, 1997.
doi:10.1029/97JC00467

13. Beckmann, P. and A. Spizzichino, "The Scattering of Electromagnetic Waves from Rough Surfaces," Ch. 3, 178-180, Macmillan, New York, 1963.

14. Stratton, J. A. and L. J. Chu, "Diffraction theory of electromagnetic waves," Physical Review, Vol. 56, 99-107, 1939.
doi:10.1103/PhysRev.56.99

15. Fung, A. K., Z. Li, and K. S. Chen, "Backscattering from a randomly rough dielectric surface," IEEE Trans. on Geosci. and Rem. Sens., Vol. 30, No. 2, 356-369, 1992.
doi:10.1109/36.134085

16. Jin, Y. Q., "Electromagnetic Scattering and Modelling for Quantitative Remote Sensing,", World Scientific, Singapore, 1993.

17. Tsang, L. and J. A. Kong, Scattering of Electromagnetic Waves, Advanced Topics, John Wiley and Songs, Inc., New York, 2001.
doi:10.1002/0471224278

18. Silver, S., Microwave Antenna Theory and Design, 108, McGraw-Hill, New York, 1949.

19. Bass, F. G. and I. M. Fuks, Wave Scattering from Statistically Rough Surfaces, Pergamon Press, Oxford, 1979.