1. Kot, J. S., "Solution of thin-wire integral equations by Nyström methods," Microw. Opt. Tech. Lett., Vol. 3, No. 11, 393-396, 1990.
2. Canino, L. F., J. J. Ottusch, M. A. Stalzer, J. L. Visher, and S. Wandzura, "Numerical solution of the Helmholtz equation in 2D and 3D using a high-order Nyström discretization," J. Comput. Phys., Vol. 146, 627-663, 1998.
doi:10.1006/jcph.1998.6077
3. Gedney, S. D., "On deriving a locally corrected Nyström scheme from a quadrature sampled moment method," IEEE Trans. Antennas Propagat., Vol. 51, No. 9, 2402-2412, 2003.
doi:10.1109/TAP.2003.816305
4. Bouwkamp, C., "A note on singularities occuring at sharp edges in electromagnetic diffraction theory," Physica, Vol. 12, 1946.
doi:10.1016/S0031-8914(46)80061-2
5. Meixner, J., "The behavior of electromagnetic fields at edges," IEEE Trans. Antennas Propagat., Vol. AP-20, No. 4, 442-446, 1972.
doi:10.1109/TAP.1972.1140243
6. Fara ji-Dana, R. and Y. Chow, "Edge condition of the field and a.c. resistance of a rectangular strip conductor," IEE Proceedings, Vol. 137, No. 2, 1990.
7. Lavretsky, E. L., "Taking into account the edge condition in the problem of scattering from the circular aperture in circular-to- rectangular and rectangular-to-rectangular waveguide junctions," IEE Proc.-Microw. Antennas Propag., Vol. 141, No. 1, 1994.
8. Balanis, C. A., Advanced Engineering Electromagnetics, 2nd edition, 1989.
9. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, 1964.
10. Liu, K. and C. A. Balanis, "Simplifed formulations for two- dimensional TE-polarization field computations," IEEE Trans. Antennas Propagat., Vol. 39, No. 2, 259-262, 1991.
doi:10.1109/8.68193
11. Tong, M. S. and W. C. Chew, "A higher-order Nystr ̈om scheme for electromagnetic scattering by arbitrarily shaped surfaces," IEEE Antennas and Wireless Propagation Letters, Vol. 4, 277-280, 2005.
doi:10.1109/LAWP.2005.853000
12. Stroud, A. H. and D. Secrest, Gaussian Quadrature Formulas, Prentice-Hall, 1966.
13. Ma, J.-H., V. Rokhlin, and S. M. Wandzura, "Generalized Gaussian quadrature rules for systems of arbitrary functions," SIAM J. Numerical Anal., Vol. 33, No. 3, 971-996, 1996.
doi:10.1137/0733048
14. Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetter- ling, Numerical Recipes, The Art of Scientific Computing, 1987.
15. Dwight, H. B., Tables of Integrals and Other Mathematical Data, 4th edition, 1961.