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Abstract—A Nystrom method with edge condition (EC) is
developed for electromagnetic scattering by two-dimensional (2D) open
structures. Since EC correctly describes the edge behavior of currents
on the scatterers, the use of it in Nystrom method can dramatically
coarsen the discretization near the edges. In the implementation of the
scheme, we derive the closed-form expressions for the singular or near-
singular integrations of Hankel functions multiplied by the polynomials
with or without EC. This allows us to control the numerical errors
efficiently by approximating the Hankel functions with more series
terms and selecting higher-order polynomials to represent the currents
in the local correction. The numerical results illustrate that the
solutions with the use of EC converge much faster than without the
use of EC. Also, EC is more essential in TM polarization than in TE
polarization due to the singular behavior of current near edges.

1. INTRODUCTION

Nystrom method has been used to solve for electromagnetic problems
since 1990 [1]. The most distinguished feature of Nystrém method
is that it directly evaluates the integrands on quadrature points for
the far-interaction terms in the impedance matrix without numerical
integration. This advantage will greatly simplify the procedure for
generating most terms in the impedance matrix. For the near-
interaction terms which only account for a small portion in the matrix
entries, the efficient local correction scheme is used [2, 3] and this will
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result in a higher-order Nystrém method at the cost of the moderate
increase of complexity.

Compared with the method of moments (MoM) and other
numerical algorithms, the Nystrom method uses more unknowns for
same geometrical discretization. This is because there are P unknowns
on each cell, where P is the number of the quadrature points for a
given quadrature rule. But the higher-order scheme can reduce the
total number of unknowns to a level below MoM by coarsening the
discretization if the same accuracy is concerned.

For the open structures, the sharp edges at the boundary of an
open surface give rise to singular solutions. For low-order methods, the
behavior of the singular solution can be captured by refining the mesh
in the neighborhood of the singularity. However, higher-order methods
usually do not converge well near the singularity, unless the singularity
due to the edge condition (EC) is accounted for. We describe here a
higher-order Nystrom method (quadratic) whereby EC is accounted
for. Since EC correctly reflects the current behavior near geometrical
edges, the use of it allows one to dramatically coarsen the discretization
near the edges without loss of accuracy.

The behavior of electromagnetic fields near an edge was first
studied by Bouwkamp [4] and the so-called edge condition (EC) was
named by his study. EC states that the electromagnetic energy density
must be integrable over any finite domain even if this domain contains
singularities of the electromagnetic field [5]. This condition requires
that the tangential component of current be of the order p~1/2, where
p is the distance from the edge, while the normal component be of the
order pl/ 2. EC has been taken into account in many applications based
on MoM [6, 7], but has not been incorporated into Nystréom method yet.
Also no higher-order methods using EC were found in the literature.
As the first step, we study the function of EC in Nystrém method
for electromagnetic scattering by 2D conducting open scatterers. Both
TM, and TE, polarizations are considered. The three-dimensional
(3D) cases will be addressed in our future work.

The scattering by 2D open structures has been studied early using
MoM without incorporating EC [8]. To investigate the function of EC
in Nystrom method, we need to coarsen the discretization extremely
near edges. This will require to use more terms in the approximation
of the singular kernel which is the zeroth-order Hankel function in
TM case, and zeroth- and second-order Hankel functions in TE case.
To this end, we derive the closed-form formulas for the integration of
the singular kernel with arbitrary-term approximation multiplied by
polynomials with or without EC. Although there are simpler series
approximation formulas for singular kernels (for instance, 9.4.1-9.4.3
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in [9]), we use the original series definition for them to emphasize
the approximation accuracy. The polynomials are used to represent
the currents over a self or near segment in the local correction. The
higher-order polynomials will generate higher-order convergence rate
when other numerical errors are negligible. It is demonstrated by our
numerical experiments that if EC is used, the numerical solutions will
converge much faster than without using EC. In addition, the use of
EC is more significant in TM polarization than in TE polarization due
to the singular behavior of TM currents near edges. The numerical
errors for TM currents may be uncontrollable without using EC.

2. NYSTROM METHOD WITH EDGE CONDITION

Consider the electromagnetic scattering by a 2D conducting strip
sketched in Fig. 1. The electric field integral equation (EFIE) to solve
for this problem can be written as [8] (assuming e ~*“* time dependence)

/{77/ J mp)dx —e m:vcosd)i7

K/T] / J Hol)(/{/p) + H2( )<I{p) COS 2¢] dx = Sln¢ e —iKT COS ¢;
(1)

where x is the wave number, 7 is the intrinsic impedance, J, and
J, are the induced currents along z and x direction corresponding to

TM polarization and TE polarization respectively, and H(()l) and Hél)
are the zeroth-order and second-order Hankel functions of the first
kind. p = |z — 2/| is the distance between a source point at 2’ and an
observation point at x on the strip. The angles ¢; and ¢ are defined
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Figure 1. Geometry of scattering by a 2D conducting strip with a
finite width.
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in Fig. 1. To solve the EFIE’s, we discretize the strip into N segments
along z direction and the EFIE becomes

N

> [ gt a)d = Vi) @

i=1"%i

where J(2') is either J,(z') (TM) or J;(2') (TE), V() stands for the
corresponding right-hand side, and g(x, ') denotes the integral kernels
in (1). Nystrom method states that the integration over a segment can
be replaced with a summation defined by a quadrature rule, i.e.,

P

Ti41
I= / J(xl)g(xaxl)dl’l = Zw(i,j)g(% x/(i,j))J(i,j) (3)
T; j=1

where P is the number of quadrature points, w; ;) is the jth weight
of a quadrature rule within the ith segment and J; ;) = J (m’(ij)) is

the current value at the jth quadrature point within the ith segment.
Jaj (i=1,...,N; j=1,...,P) are also the unknowns we want to
solve for in the matrix equation. We choose the Gaussian-Legendre
quadrature rule for the integration in (3) for higher-order accuracy.
However, the quadrature rule can only be applied when the integrand
is smooth or the source point is far away from the observation point.
If the source point coincides or approaches the observation point, the
kernel is singular or near-singular and a local correction is needed. We
have developed a simple higher-order local correction scheme for the
scattering by 3D close structures [11]. This scheme can also be used
for 2D open structures by incorporating EC. On the non-end self or
near segments, the current is approximated using a polynomial, i.e.,

JN(2) = zq: apx'® (4)
k=0

where ¢ is the order of the polynomial and a; (kK = 0,...,q) are the
coefficients. The superscript N implies the non-end segment and no
subscript in J denotes that the approximation is valid for both TM
and TE cases. For the self and near segments at two ends, EC is taken
into account and the current is approximated as
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q
JE) = \/?Z apa'™®

k=0
q
JE) = Vw -2 Z apz'® (5)
k=0

where the subscripts z and = in J correspond to TM and TE
polarizations, and the superscripts L and R correspond to the left
ends and right ends, respectively. Since EC in (5) allows the
approximation of the current to be much closer to the real current,
we may dramatically coarsen the discretization and thus reduce the
number of unknowns. The polynomial coefficients can be expressed
into current values at the quadrature points by matching those current
values at those quadrature points. This requires ¢ = P — 1, i.e., the
order of polynomial is one less than the number of quadrature points, to
determine the coefficients uniquely. For ¢ = 1 (linear approximation),
the two-point quadrature rule is used and after determining those
polynomial coefficients, the current can be written as

ah — 2"y + () — ) Jo
xh — )
sy = VA=) e =)
V! (2 — )
TR () Vw— i (xh —2)Jy +Jw — ah(a — ) Js

Vw — 2! (xh — 2))

JN(.CEI) — (

/ / / ! /
v zh —x e
JmL(x/) = :1:/ —l‘/ 2 ; Jl /1J2
2 1 .’1:1 U$2
w—21z | xh—2a ' —
i) = — 2 Ji+ = J (6)
Ty =21 | \Jw—1 \Jw —

where 2] and % are the coordinates of the two quadrature points on
each segment and J; and Jy are the current values on those quadrature
points. The current expressions using a quadratic approximation
(¢ = 2) and three-point quadrature rule can be derived in a similar
way. Substituting the above current approximation into the self and
near segments in the discretized EFIE (2), we obtain

q Tit1
N = ZJlk/ akx’kg(m,a:’)da:’
k=0 T

i
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L : L k05 /
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In previous equations, we assume that the observation points are
chosen arbitrarily on the strip. To create the matrix equation for the
unknown currents on quadrature points, a point-matching process is
needed by choosing the quadrature points as the observation points,
ie., x = x’(mm) (m=1,...,N; n=1,...,P). Once the observation
points are chosen, the far, near and self segments can be defined
accordingly. In the determination of matrix elements, the accurate
evaluation of the integrations on the right-hand side of (7) is very
critical. These integrations correspond to the diagonal and near-
diagonal elements of the impedance matrix and their accuracy is tightly
associated with the accuracy of solution. The other elements of the
matrix, which reflect the far interactions between source points and
observation points, are determined using (3) directly if the source
points are not inside end segments. If the source points fall into end
segments, numerical integrations are needed because the currents are
expressed as the polynomials with EC. In this case, the Gaussian-
Jacobi quadrature rule designed for the following integral is used [12]

= [0t s = Y i), )

-1

We take a = —0.5 (TM) or 0.5 (TE) and 8 = 0.

3. EVALUATION OF SINGULAR AND
NEAR-SINGULAR INTEGRATIONS

Those integrals in (7) are singular or near-singular. For TM
case, the kernel is the zeroth-order Hankel function including an
integrable logarithmic singularity. The Lin-Log quadrature rule [13]
has been designed to integrate such kind of integrands numerically.
Nevertheless, analytical formulas are more desirable due to their
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simplicity and flexibility in implementation. We derive such kind
of closed-form expressions for those integrals based on the series
approximation of the Hankel function. For TE case, the kernel
possesses a hyper singularity in addition to the logarithmic singularity
due to the appearance of the second-order Hankel function. In this
case, the integral associated with the hyper-singular term is defined in
a principal-value sense and the integration is performed by assuming
that the observation point is initially located at a point (zq,yo) with
yo # 0, and taking the yg — 0 limit after finding the analytical
expression for the integration [10]. Since we will use very coarse
discretization to reach a higher-order accuracy, the commonly used
small-argument approximation for the Hankel functions by taking the
first series term [10] may not be accurate for us. For this reason, we
derive the analytical formulas for the integration of Hankel functions
with arbitrary-term approximation multiplied by a polynomial with or
without EC.

3.1. TM Case

In the TM case, we need to perform the following three integrals found
in (7)

z; vw — 0

where xq is the observation point falling into the integral interval (for
self segments) or neighboring integral intervals (for near segments).
The zeroth-order Hankel function can be expressed in a series form [9]

1 5\" 1 5\"
() ZANEARS (72 ) S i2 (_Zz )
HE = T (5) 3 S+ X [ et 0] S
n=0

(10)

and the singularity comes from In(3) term. Note that the calculation of
Hankel function by the series expansion is numerically inefficient when
the argument is very large [14]. However, the argument is usually
smaller than 15 because the above series only applies to the self and
near interaction between a source point and an observation point and
the series converges very fast. For example, the numerical error of

n=0
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both zeroth-order and second-order Hankel functions will be below
10~ 1% when the number of terms in the series reaches 20 if z = 15.
Substituting the series expansion for the Hankel function in (9), the
singular parts of the integrals take the following form for the nth term

o
N = / 2™*(zog — 2" In(zg — ') da’
;i

Tk 2
+/ 2% (x — x0)*" In(2’ — xq)da’
X

0
o
It = / 2705 (2o — 22" In(xg — o) da’
T k05,0 N2ne /
+ x (" — xo)*" In(x’ — zo)dx
o
o
If = / (w—2')" %2 ’k(xo —2/)?" In(z¢ — 2’)d2’
Ti+1 "
/ 054K (3! — 202" In(a’ — wo)dx! (1)

0

where the subscript s means the singular part. With the aid of (610.9)
and (621.9) in [15], we can derive the following closed-form expressions
for these integrals
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Vw —xg, t1 = Jw — x;, to = Jw — x;+1 and an or (7 is the binomial
expansion coefficients. The non-singular part of the Hankel function
is a polynomial and the integration with this part in (9) can be easily
derived. For the integrations over near segments in (9), there is no
singularity in the kernel and the corresponding formulas can be derived
in a similar way.

3.2. TE Case

In the TE case, the singular and near-singular integrations consist of
two parts. The first part includes the zeroth-order Hankel function
kernel as shown in (10) and the singular integrals can be expressed as

o
N = / 2% (g — )" In(xg — z')da’
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Titl k(0 2n / !
+ 2z — xo) " In(z’ — xo)dx
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o
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It = Vw — 2’z (zg — ') In(z — ') da’

337,+1
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The closed-form expressions for these integrals are the same as in (12)
except for the following two formulas

2

17 = 5 (= k) + 220 (Vi — Vi)

—I—m(1)'5 In —In |~ Tl — V20
Vi + /To
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2
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3
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withu=p+k+15and v=2(p+7r)+3.
The second part includes the second-order Hankel function kernel
and the integrals take the following forms

i
N :/ ’kHQ (k|xg — 2'|) cos 2¢pda’
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By checking the series expression of the second-order Hankel function
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we find that the singular integrations come from the terms including
Ziz and In(3). For the integration associated with Z%, it is defined
in a principal-value sense. We assume that the observation point is
initially located at the point (zg,yp) with yo # 0, thus resulting in a
non-singular integration. The original integration is the yo — 0 limit
of the non-singular integration. This can be written as

. Tig1 7'k
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and introduced a complex number zg = xg + iy corresponding to the
position of observation point on the complex plane. The integrals in
(17) are all analytically integrable with the aid of (194.1.) and (194.2.)

in [15]. For k = 0,1,2 we can derive (the subscript of I denotes the
value of k)

1 1
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L 2 (2 "1 2"  92(3 3
2 1’0<2+51 * i) +3(2 Tl)
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+5xo(re —11) 5 T3
59 S1 S3
= (=24 20) - 22
0 <52 * 51) 2s0
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2
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For the integrations associated with In(%) term, the observation points
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are chosen on the strip directly and cos 2y = 1, so they can be written
as

N Tk 1\2n+2 Hoant
I :/ " (xg — ') In|xg — 2 |dx
@

L L k105 1\2n+2 oot
I :/ "0 (2o — /)2 n |2g — 2 |da
@;

Ti41
It = Vw — 2/z™® (zg — 2)?" 2 In |z — 2'|da’ (21)

S
Zs

and the corresponding formulas are obtained by replacing 2n with
2n + 2 in (13). For integrations over near segments, there is no
singularity and cos 21 = 1, and all formulas can be derived in a similar
way.

4. NUMERICAL RESULTS

To check the function of EC in Nystrom method, we take w = 2\
and 5\, where X is the wavelength, and ¢; = 90° in Fig. 1 and solve
for the current distributions on the strip surface for both TM and TE
polarizations. Figs. 2-5 show the corresponding solutions with and

x10°
8 , : . . : T T T T
exact (N=500)
6= 1 I D with EC (N=4) I
......... without EC (N=4)
i 1
6.5k 1

I, (A/m)

Figure 2. Current distribution on the strip for TM polarization,
w =2\,
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Figure 3. Current distribution on the strip for TM polarization,
w = 5.

X

1T, 1 (A/m)

exact (N=500)
with EC (N=4)
without EC (N=4)

x (\)

Figure 4. Current distribution on the strip for TE polarization,
w = 2\.
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I, | (A/m)

exact (N=1000)
o] S [ with EC (N=10)
.......... without EC (N=10)

Figure 5. Current distribution on the strip for TE polarization,
w = DA.

without EC based on a quadratic polynomial approximation (¢ = 2)
for the currents in the local correction. The solutions when N = 500
for w = 2XA and N = 1000 for w = 5\ are stable enough and can
be treated as exact solutions for comparison purpose (the root-mean-
square (RMS) error will be below 10~% when the mesh size decreases
further). From these figures, we can see that the solutions with EC
are much more accurate than without EC for the same discretization.
Also, if we compare Fig. 4 with Fig. 2 in [10] for TE case with w = 2\,
our solutions with N = 4 are much better than those MoM solutions
with N = 20. This fact indicates that higher-order Nystrém method
uses less unknowns than MoM.

Figs. 6 and 7 illustrate the current distribution obtained by
interpolation using N = 10 and quadratic approximation. These
solutions almost coincide with the exact solutions, indicating that the
highly accurate current value at an arbitrary point can be achieved by
interpolation even using very coarse discretization. The interpolation
formulas are the polynomials (4) and (5) in the local correction scheme.
Figs. 8-11 present the specific numerical errors for those solutions in
terms of RMS error definition. In the comparison, the exact current
values on non-quadrature points in the exact solutions are obtained
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Figure 6. Interpolated current distribution using very coarse meshes,
w = 2\.
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Figure 7. Interpolated current distribution using very coarse meshes,
w = 5.
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Figure 8. RMS error of the current for TM polarization, w = 2.

10"
Qv
O v G O O <9
O ------- o ......... O .......... ,O
10°} ]
S
w
n
=
is
10°F |
—O— quadratic with EC
—&— linear with EC
@+ quadratic without EC
-+ linear without EC
10'7 L L L L 1
p

10
Unknowns per Wavelength

Figure 9. RMS error of the current for TM polarization, w = 5A.
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Figure 10. RMS error of the current for TE polarization, w = 2\.
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Figure 11. RMS error of the current for TE polarization, w = 5.
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Figure 12. RMS error of the current for TM polarization without
EC. Two end points are counted.

by the interpolation based on (4) and (5). These figures demonstrate
that the solutions with EC converge much faster than without EC,
especially for TM case. There is also an obvious p-refinement with
the use of EC, i.e., a higher-order quadrature rule or higher-order
polynomial approximation for the currents in the local correction yields
a higher-order convergence rate. Note that we remove two end points
in the calculation of errors for TM without-EC case. This is because
the errors on these two points, if included, will dominate the total
errors which increase slowly as the mesh size decreases. Fig. 12 depicts
the numerical error curves for this case. This phenomenon reflects that
the use of EC is more essential in TM case than in TE case and the
numerical error may be uncontrollable without using EC in TM case.
The reason for this is that the TM current is singular near edges and
it is very easy to cause a large numerical error near edges without EC
restriction. In the contrast, EC is not as essential in TE case because of
the regular current behavior near edges. The solution can still converge
fast without using EC, but apparently the use of EC can accelerate the
convergence.
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5. CONCLUSION

We develop the EC-based Nystrom method for electromagnetic
scattering by 2D open structures. EC allows us to coarsen the
discretization dramatically. To enhance the accuracy to a higher
order for very coarse meshes, we derive the closed-form formulations
for the integrations of the kernels with arbitrary-term approximation
multiplied by the polynomials with or without EC. Numerical results
show that the application of EC will substantially enhance the
convergence rate and a higher-order accuracy can be achieved with
higher-order polynomial approximation in the local correction. Also,
the use of EC is more essential in TM case than in TE case. The
numerical error for TM current may be uncontrollable without the use
of EC due to its singular behavior near edges. All of our comparisons
are based on the current values instead of Radar Cross Section (RCS)
values. The current values are more sensitive than RCS values in
numerical errors but they are not used commonly in the accuracy
comparison in Nystrom method.
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