Vol. 122

Latest Volume
All Volumes
All Issues

Numerical Analysis of Resonant Characteristics of Graphene Rectangular Microstrip Patch Antenna with Roof Top Functions

By Chouaib Chettah and Ouarda Barkat
Progress In Electromagnetics Research C, Vol. 122, 229-241, 2022


In this paper, an analytical model is presented to investigate the resonant characteristics of a graphene rectangular microstrip patch antenna. To take into account the graphene film patch in the full-wave spectral domain technique, surface complex impedance is considered. This impedance is determined by using Kubo formula. A set of roof top sub-domain basis functions are employed to model the current density distribution on the graphene rectangular microstrip patch. The simulation results demonstrate that the designed structure can provide excellent tunable properties in Terahertz frequency region by varying different chemical potentials and relaxation times of graphene film. Variations of dimension of rectangular patch on the resonant frequency and bandwidth of a graphene rectangular microstrip antenna are presented. Finally, numerical results for the dielectric substrates effects on the operating frequencies are also presented. The analysis is validated by comparing the results with a specific example in the literature.


Chouaib Chettah and Ouarda Barkat, "Numerical Analysis of Resonant Characteristics of Graphene Rectangular Microstrip Patch Antenna with Roof Top Functions," Progress In Electromagnetics Research C, Vol. 122, 229-241, 2022.


    1. Keshavarz, S., A. Abdipour, A. Mohammadi, and R. Keshavarz, "Design and implementation of low loss and compact microstrip triplexer using CSRR loaded coupled lines," AEU | International Journal of Electronics and Communications, Vol. 111, 152913, 2019.

    2. Chettah, C., O. Barkat, and A. Chaabi, "Tunable properties of optical selective filters based on one-dimensional plasma superconductor photonic crystal," Journal of Superconductivity and Novel Magnetism, Vol. 34, 2239-2248, 2021.

    3. Keshavarz, S., R. Keshavarz, and A. Abdipour, "Compact active duplexer based on CSRR and interdigital loaded microstrip coupled lines for LTE application," Progress In Electromagnetics Research C, Vol. 109, 27-37, 2021.

    4. Llatser, I., C. Kremers, A. Cabellos-Aparicio, J. M. Jornet, E. Alarcon, and D. N. Chigrin, "Graphene-based nano-patch antenna for terahertz radiation," Photonics and Nanostructures-Fundamentals and Applications, Vol. 10, No. 4, 353-358, 2012.

    5. Wang, R., S. Raju, M. Chan, and L. J. Jiang, "Low frequency behavior of CVD graphene from DC to 40 GHz," Progress In Electromagnetics Research C, Vol. 71, 1-7, 2017.

    6. Krid, H. B., Z. Houaneb, and H. Zairi, "Reconfigurable graphene annular ring antenna for medical and imaging applications," Progress In Electromagnetics Research M, Vol. 89, 53-62, 2020.

    7. Khan, M. A. K., T. A. Shaem, and M. A. Alim, "Analysis of graphene based miniaturized terahertz patch antennas for single band and dual band operation," Optik, Vol. 194, 163012, 2019.

    8. Khan, M. A. K., T. A. Shaem, and M. A. Alim, "Graphene patch antennas with different substrate shapes and materials," Optik, Vol. 202, 163700, 2020.

    9. Hlali, A., Z. Houaneb, and H. Zairi, "Dual-band reconfigurable graphene-based patch antenna in terahertz band: Design, analysis and modeling using WCIP method," Progress In Electromagnetics Research C, Vol. 87, 213-226, 2018.

    10. Khan, M., A. Kaium, M. Ullah, R. Kabir, and M. A. Alim, "High-performance graphene patch antenna with superstrate cover for terahertz band application," Plasmonics, Vol. 15, No. 6, 1719-1727, 2020.

    11. Shubham, A., D. Samantaray, S. K. Ghosh, S. Dwivedi, and S. Bhattacharyya, "Performance improvement of a graphene patch antenna using metasurface for THz applications," Optik, 169412, 2022.

    12. Temmar, M. N. E., A. Hocini, D. Khedrouche, and T. A. Denidni, "Analysis and design of MIMO indoor communication system using terahertz patch antenna based on photonic crystal with graphene," Photonics and Nanostructures --- Fundamentals and Applications, Vol. 43, 100867, 2021.

    13. Gatte, M. T., P. J. Soh, H. A. Rahim, R. B. Ahmad, and F. Malek, "The performance improvement of THz antenna via modeling and characterization of doped graphene," Progress In Electromagnetics Research M, Vol. 49, 21-31, 2016.

    14. Kiani, N., F. T. Hamedani, and P. Rezaei, "Realization of polarization adjusting in reconfigurable graphene-based microstrip antenna by adding leaf-shaped patch," Micro and Nanostructures, 207322, 2022.

    15. Song, R., C. Wang, Q. Chen, and D. He, "High conductivity graphene based films for antenna application," IEEE International Conference on Microwave and Millimeter Wave Technology (ICMMT), 1-3, 2020.

    16. Vashi, R., T. Upadhyaya, and A. Desai, "Graphene-based wide band semi-flexible array antenna with parasitic patch for smart wireless devices," International Journal of Microwave and Wireless Technologies, Vol. 14, No. 1, 86-94, 2022.

    17. Dhariwal, S., V. K. Lamba, and A. Kumar, "Simulation and performance analysis of carbon nano-materials based patch antennas," Indian Journal of Science and Technology, Vol. 9, No. 4, 1-8, 2016.

    18. Blackledge, J. M., A. Boretti, L. Rosa, and S. Castelletto, "Fractal graphene patch antennas and the THz communications revolution," IOP Conference Series: Materials Science and Engineering, 012001, IOP Publishing, 2021.

    19. Chopra, K., S. Misra, S. H. Gupta, and A. Rajawat, "Design and optimization of multiarray antenna operating in terahertz (THz) band for in-vivo nanonetworks," Optik, 169475, 2022.

    20. George, J. N. and M. G. Madhan, "Analysis of single band and dual band graphene based patch antenna for terahertz region," Physica E: Low-dimensional Systems and Nanostructures, Vol. 94, 126-131, 2017.

    21. Pierantoni, L., D. Mencarelli, M. Bozzi, R. Moro, and S. Bellucci, "Graphene-based electronically tuneable microstrip attenuator," Nanomaterials and Nanotechnology, Vol. 4, 18, 2014.

    22. Kumar, V., "24 GHz graphene patch antenna array," The Applied Computational Electromagnetics Society Journal (ACES), 676-683, 2019.

    23. Aldrigo, M., M. Dragoman, S. Iordanescu, F. Nastase, D. Vasilache, and A. Ziaei, "Gain tunability of graphene patch antennas for the ISM band at 24 GHz," IEEE International Workshop on Antenna Technology (iWAT), 1-4, 2020.

    24. Cao, Y. S., L. J. Jiang, and A. E. Ruehli, "An equivalent circuit model for graphene-based terahertz antenna using the PEEC method," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 4, 1385-1393, 2016.

    25. Zhang, B., J. Zhang, C. Liu, Z. P. Wu, and D. He, "Equivalent resonant circuit modeling of a graphene-based bowtie antenna," Electronics, Vol. 7, No. 11, 285, 2018.

    26. Di Ruscio, D., P. Burghignoli, P. Baccarelli, D. Comite, and A. Galli, "Spectral method of moments for planar structures with azimuthal symmetry," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 4, 2317-2322, 2014.

    27. Zargano, G. F., A. M. Lerer, and A. O. Pelevin, "Spectral method for calculation of slotted antennas with layered insulator," Journal of Communications Technology and Electronics, Vol. 67, No. 1, 17-25, 2022.

    28. Barkat, O., "Improving the performances of triangular microstrip antenna with multilayered configuration," COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Vol. 33, No. 1/2, 337-354, 2014.

    29. Barkat, O., "Modeling and optimization of radiation characteristics of triangular superconducting microstrip antenna array," Journal of Computational Electronics, Vol. 13, No. 3, 657-665, 2014.

    30. Park, S. O., C. A. Balanis, and C. R. Birtcher, "Analytical evaluation of the asymptotic impedance matrix of a grounded dielectric slab with roof top functions," IEEE Transactions on Antennas and Propagation, Vol. 46, No. 2, 251-259, 1998.

    31. Hlali, A., Z. Houaneb, and H. Zairi, "Tunable filter based on hybrid metal-graphene structures over an ultrawide terahertz band using an improved Wave Concept Iterative Process method," Optik, Vol. 181, 423-431, 2019.

    32. Hanson, G. W., "Fundamental transmitting properties of carbon nanotube antennas," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 11, 3426-3435, 2005.

    33. Hanson, G. W., "Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene," Journal of Applied Physics, Vol. 103, No. 6, 064302, 2008.

    34. Hossain, M. B., M. S. Hossain, M. M. Hossain, and M. D. Haque, "Optimization of the feeding point location of rectangular microstrip patch antenna," Adv. Sci. Technol. Eng. Syst., Vol. 5, 382-386, 2020.

    35. Younssi, M., A. Jaoujal, M. D. Yaccoub, A. El Moussaoui, and N. Aknin, "Study of a microstrip antenna with and without superstrate for terahertz frequency," Int. J. Innov. Appl. Stud., Vol. 2, 369-371, 2013.