Vol. 119

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2022-03-29

Modified Patch and Ground Plane Geometry with Reduced Resonant Frequency

By Khan Masood Parvez, Tabish Ali, and Satyabrata Maiti
Progress In Electromagnetics Research C, Vol. 119, 135-144, 2022
doi:10.2528/PIERC22020307

Abstract

A higher degree of miniaturization technique is presented based on frequency reduction method for a rectangular patch antenna by introducing slot on the radiating patch with unchanged antenna configuration. To realize the frequency reduction technique, a rectangular patch is design to operate at the fundamental frequency. Then a slot on the radiating patch is introduced and as an effect of slot, fundamental resonant frequency is shifted in left side in reflection coefficient plot. The percentage of reduction resonant frequency is 65.80% where 2.31 GHz is the fundamental frequency, and 790 MHz is the operating frequency of slot integrated patch geometry. In addition, we introduced another similar slot on the ground plane, and as a result, resonant frequency shifted from 790 MHz to 729 MHz caused by 68.44% reduction in resonant frequency with unchanged antenna dimension. Equivalent circuits have been analyzed for each antenna topology. To verify the simulated results, prototypes are fabricated and complied with measured results.

Citation


Khan Masood Parvez, Tabish Ali, and Satyabrata Maiti, "Modified Patch and Ground Plane Geometry with Reduced Resonant Frequency," Progress In Electromagnetics Research C, Vol. 119, 135-144, 2022.
doi:10.2528/PIERC22020307
http://jpier.org/PIERC/pier.php?paper=22020307

References


    1. Mosallaei, H. and K. Sarabandi, "Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate," IEEE Trans. Antennas Propag., Vol. 52, No. 9, 2403-2414, Sep. 2004.
    doi:10.1109/TAP.2004.834135

    2. Buell, K., H. Mosallaei, and K. Sarabandi, "A substrate for small patch antennas providing tunable miniaturization factors," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 1, 135-146, Jan. 2006.
    doi:10.1109/TMTT.2005.860329

    3. Mosallaei, H. and K. Sarabandi, "Design and modeling of patch antenna printed on magneto-dielectric embedded-circuit metasubstrate," IEEE Trans. Antennas Propag., Vol. 55, No. 1, 45-52, Jan. 2007.
    doi:10.1109/TAP.2006.886566

    4. Zhu, H. L., S. W. Cheung, and T. I. Yuk, "Miniaturization of patch antenna using metasurface," Microw. Opt. Technol. Lett., Vol. 57, No. 9, 2050-2056, Sep. 2015.
    doi:10.1002/mop.29275

    5. Chen, D., W. Yang, Q. Xue, and W. Che, "Miniaturized wideband planar antenna using inter-embedded metasurface structure," IEEE Trans. Antennas Propag., Vol. 69, No. 5, 3021-3026, May 2021.
    doi:10.1109/TAP.2020.3028245

    6. Zhu, S., X. Yang, J. Wang, and B. Wang, "Miniaturization of patch antenna based on hybrid topology optimization," Int. J. RF Microw. Comput. Eng., Vol. 30, No. 9, Sep. 2020.

    7. Jarchi, S., J. Rashed-Mohassel, and R. Faraji-Dana, "Proximity effects of a layered periodic structure on miniaturization of patch antennas," Int. J. RF Microw. Comput. Eng., Vol. 23, No. 5, 549-558, Sep. 2013.
    doi:10.1002/mmce.20689

    8. Kula, J. S., D. Psychoudakis, W. J. Liao, C. C. Chen, J. L. Volakis, and J. W. Halloran, "Patch-antenna miniaturization using recently available ceramic substrates," IEEE Antennas Propag. Mag., Vol. 48, No. 6, 13-20, Dec. 2006.
    doi:10.1109/MAP.2006.323335

    9. Ouedraogo, R. O., E. J. Rothwell, A. R. Diaz, K. Fuchi, and A. Temme, "Miniaturization of patch antennas using a metamaterial-inspired technique," IEEE Trans. Antennas Propag., Vol. 60, No. 5, 2175-2182, 2012.
    doi:10.1109/TAP.2012.2189699

    10. Singh, A. K., M. P. Abegaonkar, and S. K. Koul, "Highly miniaturized dual band patch antenna loaded with metamaterial unit cell," Microw. Opt. Technol. Lett., Vol. 59, No. 8, 2027-2033, Aug. 2017.
    doi:10.1002/mop.30683

    11. Chair, R., K. M. Lee, and K. F. Lee, "Miniature multilayer shorted patch antenna," Electron. Lett., Vol. 36, 3-4, Jan. 2000.
    doi:10.1049/el:20000029

    12. Khan, M. U., M. S. Sharawi, and R. Mittra, "Microstrip patch antenna miniaturisation techniques: A review," IET Microwaves, Antennas and Propagation, Vol. 9, No. 9, 913-922, Institution of Engineering and Technology, Jun. 18, 2015.
    doi:10.1049/iet-map.2014.0602

    13. Haque, S. K. M. and K. M. Parvez, "Slot antenna miniaturization using slit, strip, and loop loading techniques," IEEE Trans. Antennas Propag., Vol. 65, No. 5, 2215-2221, May 2017.
    doi:10.1109/TAP.2017.2684191

    14. Ghosh, B., S. K. Moinul Haque, and D. Mitra, "Miniaturization of slot antennas using slit and strip loading," IEEE Trans. Antennas Propag., Vol. 59, No. 10, 3922-3927, Oct. 2011.
    doi:10.1109/TAP.2011.2163754

    15. Ghosh, B., S. K. Moinul Haque, and N. R. Yenduri, "Miniaturization of slot antennas using wire loading," IEEE Antennas Wirel. Propag. Lett., Vol. 12, 488-491, 2013.
    doi:10.1109/LAWP.2013.2255857

    16. Parvez, K. M. and S. K. Moinul Haque, "Bandwidth enhancement and cross-polarization suppression of slot antenna," Electromagnetics, Vol. 41, No. 2, 119-130, 2021.
    doi:10.1080/02726343.2021.1879358

    17. Deshmukh, A. A. and K. P. Ray, "Compact broadband slotted rectangular microstrip antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1410-1413, 2009.
    doi:10.1109/LAWP.2010.2040061

    18. Dasgupta, S., B. Gupta, and H. Saha, "Compact equilateral triangular patch antenna with slot loading," Microw. Opt. Technol. Lett., Vol. 56, No. 2, 268-274, Feb. 2014.
    doi:10.1002/mop.28073

    19. Won, C., Y. Do Kim, and H. M. Lee, "A compact micro strip patch antenna with T-shaped slits for portable GPS handsets," ISAPE 2003 - 2003 6th International Symposium on Antennas, Propagation and EM Theory, Proceedings, 335-338, 2003.

    20. Farahbakhsh, A. and D. Zarifi, "Miniaturization of patch antennas by curved edges," AEU - Int. J. Electron. Commun., Vol. 117, 153125, Apr. 2020.
    doi:10.1016/j.aeue.2020.153125

    21., , Ansys HFSS ver 19.2, Ansys Corp., Pittsburgh, PA, USA, 2018.

    22. Balanis, C., Antenna Theory, Wiely-Interscience, New York, 2005.

    23., , NI AWR ver 13, National Instrument Corporation, EI Segundo, CA, USA, 2019.